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Abstract

We apply the Taylor matrix method to generate semi-analytic solutions of a recently introduced SIR-type epidemic
model for the spread of COVID-19, focusing on the case where the actual solution spirals towards a limit cycle. We

assess the accuracy of these semi-analytic solutions in estimating the peaks of the epidemic waves, comparing them

with semi-analytic solutions generated using the differential transform method. Since the model’s analytic solution
is not easily obtainable, we calculate the errors relative to the numerical solution generated by the fourth-order

Runge-Kutta method with a sufficiently small step size. The results show that the errors produced by the Taylor

matrix method decay faster than those produced by the differential transform method, indicating the superiority
of the former method over the latter. However, this superiority comes with the trade-off of a significantly longer

computation duration.
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1. Introduction

The recent COVID-19 pandemic has intensified research efforts in mathematical epidemiology. Indeed, over the
last few years, the literature has experienced a significant rise in the development of novel epidemic models aimed at
understanding, predicting, and controlling the spread of infectious diseases. Many of such models, designed to capture
not only the complex dynamics of the disease itself but also the effectiveness of various interventions, take the form
of non-linear systems of differential equations that are difficult, if not impossible, to solve analytically. Accordingly,
in studies employing such models, methods that can generate approximate solutions become of interest. Typically, to
generate such solutions, mathematicians resort to numerical methods [20, Chap. 22].

Numerical methods are not without limitations. In particular, such methods rely fundamentally on discretization,
a concept known to potentially alter the behaviour of solutions of differential equations. The latter is observed even in
one of the simplest population models, the logistic differential equation [25, sec. 1.1], all of whose solutions approach a
finite limit known as the carrying capacity, while its well-known discretized counterpart, the logistic difference equation
[25, sec. 2.3], exhibits the so-called period-doubling cascade, which leads to the presence of not only oscillatory but
also chaotic solutions for certain parameter values. Recently, the same phenomenon has been observed to occur in
some discretized epidemic models [14, 22, 28].

Such numerical methods’ limitations have motivated the search for alternatives. A class of methods that could
serve as powerful, discretization-free alternatives is semi-analytic methods. Such methods, when applied to a system
of differential equations, aim to generate a sequence of functions that estimate the system’s analytic solution within
a neighbourhood of interest. Examples of such methods include the differential transform method [3, 9, 23, 33], the
variational iteration method [15–17, 30, 31], the homotopy analysis method [5, 18, 21], the Adomian decomposition
method [1, 2], as well as the Taylor matrix method and its variants [7, 11, 12, 26, 27]. Many of these methods have
been applied to epidemic models [6, 8, 10, 13, 24, 29]. In particular, Ucar and Celik, in 2022, applied the Taylor
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Figure 1. The compartment diagram of the SIR-type model (1.1).

matrix method to generate semi-analytic solutions of the Kermack-McKendrick SIR-type epidemic model, analyzing
the results in the context of COVID-19 [29].

The Kermack-McKendrick SIR-type model [19], one of the simplest epidemic models, combines a bilinear incidence
rate with a linear recovery rate while disregarding demographic factors and eradicative interventions. Numerous more
realistic SIR-type models have been constructed through modifications of this model. In particular, Yong et al. [32],
in 2022, constructed the SIR-type model

dS

dt
= λ− µS − βSI

1 + γS
,

dI

dt
= −µI − δI +

βSI

1 + γS
− αI

1 + ρI
,

dR

dt
= −µR+

αI

1 + ρI
,

(1.1)

to assess the effect of the susceptible individuals’ cautiousness level γ ∈ [0, 1] and hospitals’ bed-occupancy rate
ρ ∈ [0, 1] on the spread of COVID-19. Here, as customary, S = S(t), I = I(t), and R = R(t) denote, respectively,
the number of susceptible, infected, recovered individuals at time t ⩾ 0. The positive parameters λ, µ, δ, β, α
represent, respectively, the recruitment rate, the death coefficient, the death coefficient increment due to COVID-19,
the incidence coefficient, and the recovery coefficient. The rational-form incidence rate βSI/ (1 + γS) captures the
effect of the susceptible individuals’ cautiousness on decelerating transmission, while the rational-form recovery rate
αI/ (1 + ρI) captures the effect of the hospitals’ bed occupancy in decelerating recovery. The model’s compartment
diagram is displayed in Figure 1. For details on the model’s construction, we refer the reader to [32, sec. 1].

Inspired by the work of Ucar and Celik [29], the objective of the present paper is to apply the Taylor matrix method
to the model (1.1). More specifically, we shall apply the Taylor matrix method to generate semi-analytic solutions of
the model (1.1) using a set of parameter values that gives rise to a dynamical behaviour that is not present in the
Kermack-McKendrick model: convergence towards a limit cycle [32, Case VI in Tbl. 3]. In such a case, the number of
infected individuals oscillates over time, and we aim to assess the accuracy of the semi-analytic solutions in estimating
the local maxima of the oscillations, i.e., the so-called peaks of the epidemic waves. For comparison, we shall carry
out the same estimation using the semi-analytic solutions generated by the differential transform method. Since the
model’s analytic solution is not easily obtainable, we shall calculate the errors with respect to the numerical solution
generated by the fourth-order Runge-Kutta method with a sufficiently small step size.

The rest of the paper is organized as follows. In the upcoming section 2, we describe the three methods involved in
this paper: the Taylor matrix method, the differential transform method, and the fourth-order Runge-Kutta method.
Subsequently, in section 3, considering a specific numerical scenario, i.e., that in which the solution of the model (1.1)
converges to a stable limit cycle, we compare the performance of the Taylor matrix and differential transform methods
in estimating the first two appearing epidemic peaks, computing the errors relative to the numerical solution provided
by the fourth-order Runge-Kutta method. In the final section 4, we state our conclusions and describe avenues for
future research.
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2. The methods

In this section, we discuss the application of three non-analytic methods to generate the solution of our model (1.1),
namely, the semi-analytic Taylor matrix method (subsection 2.1) and differential transform method (subsection 2.2),
as well as the numerical fourth-order Runge-Kutta method (subsection 2.3). The semi-analytic methods rely on the
notion of Taylor polynomials of a function, a definition of which shall now be provided [4, Def. 9.7.3].

Definition 2.1. Let F be a function that is differentiable N times, and let t0 be a real number. The N -th Taylor
polynomial of F about t = t0 is given by

F̂N (t) =
N∑

n=0

F (n) (t0)

n!
(t− t0)

n
,

where F (n) denotes the n-th derivative of F . The N -th Taylor polynomial of F about t = 0 is also known as the N -th
Maclaurin polynomial of F .

2.1. The Taylor matrix method. Let us first describe how we generate semi-analytic solutions of the model (1.1)
using the Taylor matrix method, which is largely based on the work of Ucar and Celik [29]. Given a non-negative

integer N , we shall generate an approximate solution
(
Ŝ, Î, R̂

)
=

(
Ŝ(t), Î(t), R̂(t)

)
given by the Maclaurin-polynomial

forms

ŜN (t) =
N∑

n=0

Snt
n, ÎN (t) =

N∑
n=0

Int
n, and R̂N (t) =

N∑
n=0

Rnt
n, (2.1)

where, for every n ∈ {0, 1, 2, . . . , N},

Sn =
S(n)(0)

n!
, In =

I(n)(0)

n!
, and Rn =

R(n)(0)

n!
.

In particular,
(
S0, I0, R0

)
=

(
S(0), I(0), R(0)

)
is the accompanying initial condition.

We begin by writing

[
Ŝ(t)

]
=

[
S0t

0 + S1t
1 + S2t

2 + . . .+ SN tN
]
=

[
1 t t2 · · · tN

]


S0

S1

S2

...
SN

 = T(t)S,

and, similarly, [
Î(t)

]
= T(t)I and

[
R̂(t)

]
= T(t)R,

where

T(t) =
[
1 t t2 · · · tN

]
, S =


S0

S1

S2

...
SN

 , I =


I0
I1
I2
...
IN

 , and R =


R0

R1

R2

...
RN

 .

Next, computing the derivatives of the expressions in (2.1), we obtain[
Ŝ′(t)

]
=

[
1S1t

0 + 2S2t
1 + . . .+NSN tN−1

]
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=
[
1 t t2 · · · tN

]


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0




S0

S1

S2

...
SN


= T(t)BS,

and, similarly, [
Î ′(t)

]
= T(t)BI and

[
R̂′(t)

]
= T(t)BR,

where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

 .

Finally, to form an approximant Ŝ(t)Î(t) for the expression S(t)I(t) present in the model (1.1), we notice that[
Ŝ(t)Î(t)

]
=

[ (
S0t

0 + S1t
1 + . . .+ SN tN

) (
I0t

0 + I1t
1 + . . .+ IN tN

) ]

=
[
1 t · · · tN

]  1 t · · · tN 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 t · · · tN 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 t · · · tN





S0I0
...

S0IN
S1I0
...

S1IN
S2I0
...

S2IN
...

SNIN



=
[
1 t · · · tN

]  1 t · · · tN 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 t · · · tN 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 t · · · tN




S0I
S1I
S2I
...

SNI


= T(t)T∗(t)S̄,

where

T∗(t) =


T(t) O · · · O
O T(t) · · · O
...

...
. . .

...
O O · · · T(t)

 , and S̄ =


S0I
S1I
...

SNI

 .
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We thus assume that the approximate solution
(
Ŝ, Î, R̂

)
=

(
Ŝ(t), Î(t), R̂(t)

)
of our model (1.1) has its coefficients

satisfying the system of equations

T(t)BS− λ+ µT(t)S+
βT(t)T∗(t)S̄

1 + γT(t)S
= 0,

T(t)BI+ µT(t)I+ µ′T(t)I− βT(t)T∗(t)S̄

1 + γT(t)S
+

αT(t)I

1 + ρT(t)I
= 0,

T(t)BR+ µT(t)R− αT(t)I

1 + ρT(t)I
= 0.

(2.2)

Letting

D1(t) = T(t)B+ µT(t), H1(t) =
βT(t)T∗(t)

1 + γT(t)S
,

D2(t) = T(t)B+ µT(t) + µ′T(t) +
αT(t)

1 + ρT(t)I
, H2(t) = −βT(t)T∗(t)

1 + γT(t)S
,

we rewrite the system’s first two equations as the system{
D1(t)S+H1(t)S̄ = λ,

D2(t)I+H2(t)S̄ = 0,

which can further be rewritten in the matricial form

D(t)SI+H(t)¯̄S = G(t), (2.3)

where

D(t) =

[
D1(t) O
O D2(t)

]
, SI =

[
S
I

]
, G(t) =

[
λ
0

]
,

H(t) =

[
H1(t) O
O H2(t)

]
, ¯̄S =

[
S̄
S̄

]
.

Next, we define the so-called collocation points

ts =
b

N
s, s ∈ {0, 1, . . . , N}.

Substituting these into (2.3) gives the N + 1 matricial equations

D(ts)SI+H(ts)
¯̄S = G(ts), s ∈ {0, 1, . . . , N},

which can be written as a single matricial equation

D̃SI+ H̃S̃ = G̃, (2.4)

where

D̃ =


D(t0) O · · · O
O D(t1) · · · O
...

...
. . .

...
O O · · · D(tN )

 , SI =


SI

SI
...

SI

 , G̃ =


G(t1)
G(t2)

...
G(tN )

 .

H̃ =


H(t0) O · · · O
O H(t1) · · · O
...

...
. . .

...
O O · · · H(tN )

 , S̃ =


¯̄S
¯̄S
...
¯̄S

 .

Finally, we write the accompanying initial condition
(
S0, I0

)
=

(
S(0), I(0)

)
as the matricial equations

T(0)S = λ1 and T(0)I = λ2,
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which are to be used to replace the lowermost two rows in the matricial Equation (2.4). The resulting matricial
equation is then solved using, e.g., matrix inversion, to obtain the coefficients S0, . . . , SN and I0, . . . , IN in our
approximate solution (2.1), and consequently expressions for Ŝ(t) and Î(t) as polynomials in t. Substituting these

coefficients into (2.2) then gives an expression for R̂(t) as a polynomial in t.

2.2. The differential transform method. Let us now discuss the differential transform method [3, 9, 23, 33]. First,
to solve semi-analytically a differential equation in an unknown function y = y(x) using the differential transform
method, we consider the Taylor series of the function y at a point x = x0, namely,

y(x) =
∞∑
k=0

(x− x0)
k

k!

[
dky(x)

dxk

]
x=x0

. (2.5)

The differential transform of y(x) is defined to be

Y (k) =
1

k!

[
dky(x)

dxk

]
x=x0

.

In other words, Y (k) is defined as the coefficient of (x− x0)
k in the Taylor series (2.5). We thus seek an approximate

solution of the form

ŷN (x) =
N∑

k=0

Y (k)(x− x0)
k,

for some non-negative integer N . The differential transforms of some commonly encountered functions can be found
in, e.g., [23, Tbl. 1].

Direct application of the differential transform to both sides of the three equations in our model (1.1) requires the
computation of the differential transform of rational expressions, which is neither straightforward nor readily found in

most differential transform tables. In this paper, let us assume that the rational expressions
[
β
∑k

l=0 S(k− l)I(l)
]
/
[
1+

γS(k)
]
and αI(k)/

[
1 + ρI(k)

]
can be used as substitutes for the differential transforms of the rational expressions

βSI/
(
1+γS

)
and αI/

(
1+ρI

)
, respectively, thereby letting our semi-analytic solution of the model (1.1) be generated

by the system 

(k + 1)S(k + 1) = λ− µS(k)−
β
∑k

l=0 S(k − l)I(l)

1 + γS(k)
,

(k + 1)I(k + 1) = −µI(k)− µ′I(k) +
β
∑k

l=0 S(k − l)I(l)

1 + γS(k)
− αI(k)

1 + ρI(k)
,

(k + 1)R(k + 1) = −µR(k) +
αI(k)

1 + ρI(k)
,

where S(k), I(k), and R(k) denote the differential transforms of S(t), I(t), and R(t), respectively.
The system’s first equation is equivalent to

S(k + 1) + γ
k∑

l=0

S(k − l)S(l + 1) =
λ− µS(k) + λγS(k)− µγ

∑k
l=0 S(k − l)S(l)− β

∑k
l=0 S(k − l)I(l)

k + 1
,

while its second and third equations are equivalent to

I(k + 1) + ρ
k∑

l=0

I(k − l)I(l + 1) + γ
k∑

l=0

S(k − l)I(l + 1) + ργ
k∑

l2=0

l2∑
l1=0

I(k − l2)S(l2 − l1)I(l1 + 1)

=
−I(k)(µ+ δ + α)−

∑k
l=0 I(k − l)I(l)(µρ+ δρ)−

∑k
l=0 S(k − l)I(l)(µγ + δγ − β + γα)

k + 1

−
∑k

l2=0

∑l2
l1=0 I(k − l2)S(l2 − l1)I(l1)(µργ + δργ − ρβ)

k + 1
,
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and to

R(k + 1) + ρ
k∑

l=0

I(k − l)R(l + 1) =
−µR(k)− µρ

∑k
l=0 I(k − l)R(l) + αI(k)

k + 1
,

respectively. Given an initial condition
(
S(0), I(0), R(0)

)
, the last three equations serve as recursions which enable an

iterative computation of the coefficients of our approximate solution
(
Ŝ, Î, R̂

)
=

(
Ŝ(t), Î(t), R̂(t)

)
given by

ŜN (t) =
N∑

k=0

SN (k) (t− t0)
k
, ÎN (t) =

N∑
k=0

I(k) (t− t0)
k
, R̂N (t) =

N∑
k=0

R(k) (t− t0)
k
,

of the model (1.1), for some initially chosen N and t0.

2.3. The fourth-order Runge-Kutta method. Finally, let us discuss the application of the fourth-order Runge-
Kutta method [20, sec. 22.5] to our model (1.1). Given an initial condition

(
S0, I0, R0

)
=

(
S(0), I(0), R(0)

)
, fixing a

step size h > 0 and defining the time-step
ti = ih,

for every non-negative integer i, the method generates the numerical solution
((
Si, Ii, Ri

))∞
i=0

of the model (1.1),
where, for every non-negative integer i,

Si ≈ S (ti) , Ii ≈ I (ti) , and Ri ≈ R (ti) ,

via the recursion
Si+1 = Si +

h

6
(k1 + 2k2 + 2k3 + k4) ,

Ii+1 = Ii +
h

6
(l1 + 2l2 + 2l3 + l4) ,

Ri+1 = Ri +
h

6
(m1 + 2m2 + 2m3 +m4) ,

where

k1 = λ− µSi −
βSiIi
1 + γSi

, l1 = −µIi − µ′Ii +
βSiIi
1 + γSi

− αIi
1 + ρIi

,

m1 = −µR+
αIi

1 + ρIi
, k2 = λ− µ

(
Si +

k1
2

)
− β (Si + k1/2) (Ii + l1/2)

1 + γ (Si + k1/2)
,

l2 = −µ

(
Ii +

l1
2

)
− µ′

(
Ii +

l1
2

)
+

β (Si + k1/2) (Ii + l1/2)

1 + γ (Si + k1/2)
− α (Ii + l1/2)

1 + ρ (Ii + l1/2)
,

m2 = −µ
(
Ri +

m1

2

)
+

α (Ii + l1/2)

1 + ρ (Ii + l1/2)
, k3 = λ− µ

(
Si +

k2
2

)
− β (Si + k2/2) (Ii + l2/2)

1 + γ (Si + k2/2)
,

l3 = −µ

(
Ii +

l2
2

)
− µ′

(
Ii +

l2
2

)
+

β (Si + k2/2) (Ii + l2/2)

1 + γ (Si + k2/2)
− α (Ii + l2/2)

1 + ρ (Ii + l2/2)
,

m3 = −µ
(
Ri +

m2

2

)
+

α (Ii + l2/2)

1 + ρ (Ii + l2/2)
, k4 = λ− µ (Si + k3)−

β (Si + k3) (Ii + l3)

1 + γ (Si + k3)
,

l4 = −µ (Ii + l3)− µ′ (Ii + l3) +
β (Si + k3) (Ii + l3)

1 + γ (Si + k3)
− α (Ii + l3)

1 + ρ (Ii + l3)
,

m4 = −µ (Ri +m3) +
α (Ii + l3)

1 + ρ (Ii + l3)
.
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Figure 2. The solution (S(t), I(t), R(t)) associated with the initial condition
(
S
(1)
0 , I

(1)
0 , R

(1)
0

)
=

(80, 72, 125) of the model (1.1) with parameter values given by (3.1).

3. Computation and discussion

In this section, we compare the performance of the Taylor matrix method with that of the differential transform
method in estimating the so-called epidemic peaks, i.e., the local maxima of the number of infected individuals in
the solutions of the model (1.1), using the errors calculated with respect to the numerical fourth-order Runge-Kutta
method. Our computation uses the following set of parameters for which the solutions of the model (1.1) exhibit a
dynamical behaviour that is not found in the Kermack-McKendrick SIR-type model, namely, convergence to a stable
limit cycle [32, eqn. (8) and Case VI]:

β = 0.05, λ = 10, µ = 0.01, µ′ = 0.1, α = 0.2, ρ = 0.1, and γ = 0.35. (3.1)

Furthermore, defining

S
(1)
0 = 80, I

(1)
0 = 72, R

(1)
0 = 125, and S

(2)
0 = 70, I

(2)
0 = 75, R

(2)
0 = 167,

we shall apply the two semi-analytic methods to estimate only the first two epidemic peaks occurring in the solution of

the model (1.1) associated to the initial condition
(
S
(1)
0 , I

(1)
0 , R

(1)
0

)
. Figure 2 displays a plot of this solution, generated

using the fourth-order Runge-Kutta method with step size h = 0.1. The numbers of infected individuals at the first and

second peaks are I
(1)
max ≈ 81.22280291 and I

(2)
max ≈ 81.14784694, respectively, which are achieved at t = t

(1)
max = 41 and at

t = t
(2)
max = 259.8, respectively. To estimate the first epidemic peak, we shall use the initial condition

(
S
(1)
0 , I

(1)
0 , R

(1)
0

)
itself, while to estimate the second epidemic peak, we shall use the approximate initial condition

(
S
(2)
0 , I

(2)
0 , R

(2)
0

)
. The

results are visualised in Figures 3 and 4. In the Taylor matrix method, the parameter N determines the sizes of the
matrices involved in the matrices in the matricial equation to be solved, whereas in the differential transform method,
the same parameter determines the number of iterations.

As expected, the semi-analytic solutions depart from the numerical solution as t → ∞. However, as N → ∞, the
semi-analytic solutions provide increasingly accurate approximations for the numerical solution. Figures 3 and 4 also
show that for the largest utilized value of N , i.e., N = 8, the approximant Î(t) obtained using the Taylor matrix
method appears to be closer to the numerical solution compared to that obtained using the differential transform
method.

In Tables 1 and 2, we compare the errors of the estimates of the first and second epidemic peaks provided by the semi-
analytic solutions of our model (1.1) generated by the Taylor matrix and differential transform methods, calculated
with respect to those provided by the numerical solution generated by the fourth-order Runge-Kutta method. The
errors are calculated using the formulae

E(1)
N =

∑
i

∣∣∣Ii − ÎN (ih)
∣∣∣ , and E(2)

N =
∣∣∣Itmax

− ÎN (tmaxh)
∣∣∣ ,
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Figure 3. The time-evolution of the size of the infected subpopulation near the first (left) and second
(right) epidemic peaks obtained using the Taylor matrix method with various values of N , and using
the fourth-order Runge-Kutta method.

Figure 4. The time-evolution of the size of the infected subpopulation near the first (left) and second
(right) epidemic peaks obtained using the differential transform method with various values of N , and
using the fourth-order Runge-Kutta method.

where E(1)
N represents a cumulative error, while E(2)

N represents the error at the respective peak. The summation in

the formula for E(1)
N is carried out over all values of i for which ti = ih ranges from 0 to 100 in the case of the first

peak, and from 230 to 330 in the case of the second peak. In the expression for E(2)
N , we replace tmax with t

(1)
max = 41

in the case of the first peak, and with t
(2)
max = 259.7 in the case of the second peak.

Figures 5 and 6 show that the errors associated to the two semi-analytic methods exhibit decreasing trends as
N → ∞, albeit with fluctuations rather than monotonic. It is apparent that the errors produced by the Taylor matrix
method decreases to zero faster than those produced by the differential transform method, as N → ∞. In particular,
for N = 8, the Taylor matrix method provides the most accurate estimate of the second epidemic peak, with the

smallest error E(2)
8 of approximately 0.004. However, such a high accuracy comes at a cost: a longer computation
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Table 1. The errors of the estimations of the first epidemic peak by the two semi-analytic methods
with respect to the numerical solution generated by the fourth-order Runge-Kutta method, along with
the respective semi-analytic methods’ computation durations in seconds.

N
Taylor matrix Differential transform

E(1)
N E(2)

N Duration E(1)
N E(2)

N Duration
2 29240.256 10.965 4.747 25828.257 9.242 0.311
3 6544.322 1.481 13.627 4606.333 1.355 0.470
4 8202.949 1.181 33.992 3741.377 1.596 0.544
5 20303.300 0.300 58.658 2873.646 1.738 0.636
6 3419.027 0.874 69.944 3565.476 1.691 0.789
7 1666.082 0.903 141.484 3501.628 1.692 1.009
8 1402.185 0.712 203.321 5384.348 1.693 1.330

Table 2. The errors of the estimations of the second epidemic peak by the two semi-analytic methods
with respect to the numerical solution generated by the fourth-order Runge-Kutta method, along with
the respective semi-analytic methods’ computation durations in seconds.

N
Taylor matrix Differential transform

E(1)
N E(2)

N Duration E(1)
N E(2)

N Duration
2 14854.870 2.084 3.671 36074.520 7.746 0.467
3 13486.191 1.939 8.480 17222.802 2.304 0.501
4 45098.325 0.376 19.578 15610.786 2.377 0.590
5 29324.767 0.153 34.920 20665.705 2.301 0.693
6 3843.227 0.007 77.214 23939.511 2.284 0.950
7 4529.173 0.004 135.224 23653.042 2.285 1.106
8 4967.815 0.004 201.033 23546.477 2.285 1.238

Figure 5. The errors E(1)
N (left) and E(2)

N (right) produced by the Taylor matrix and differential
transform methods in the estimation of the first epidemic peak, as functions of N .
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Figure 6. The errors E(1)
N (left) and E(2)

N (right) produced by the Taylor matrix and differential
transform methods in the estimation of the second epidemic peak, as functions of N .

duration. Indeed, from Tables 1 and 2, we can see that the Taylor matrix method generally requires a remarkably
longer computation duration compared to the differential transform method, especially for the larger values of N .

4. Conclusions and future research

We have applied the Taylor matrix method to generate semi-analytic solutions of a recently introduced SIR-type
epidemic model, using these solutions to estimate the emerging epidemic peaks. We have compared the method’s
performance with that of the differential transform method. The results reveal that the errors produced by the Taylor
matrix method decay faster than those produced by the differential transform method, where the errors are calculated
with respect to the numerical solution generated by the fourth-order Runge-Kutta method. This shows the superiority
of the Taylor matrix method over the differential transform method. However, the Taylor matrix method requires a
notably longer computation duration than the differential transform method.

This research could be extended in a number of ways. First, one could apply the two semi-analytic methods
used in this paper and other semi-analytic methods to generate approximate solutions for other epidemic models,
particularly those involving rational-form incidence and recovery rates. The assumption we used in our application of
the differential transform method to deal with such rates is hoped to motivate the proposal of alternative assumptions,
which further open opportunities for accuracy comparisons. In addition, the computation of estimates of the second
epidemic peak, which we performed using an approximate initial condition, could also be performed using the initial
condition used to estimate the first epidemic peak. For this purpose, to avoid excessively large error values, one could
select epidemic models that generate relatively short inter-peak time intervals.
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