 
				| تعداد نشریات | 45 | 
| تعداد شمارهها | 1,416 | 
| تعداد مقالات | 17,490 | 
| تعداد مشاهده مقاله | 56,507,522 | 
| تعداد دریافت فایل اصل مقاله | 18,750,106 | 
| A Novel Neural Network Architecture for Solving Fractional Differential Equations | ||
| Computational Methods for Differential Equations | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 23 شهریور 1404 اصل مقاله (2.32 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2025.63059.2803 | ||
| نویسندگان | ||
| Hassan Dana Mazraeh1؛ Ali Nosrati Firoozsalari2؛ Alireza Afzal Aghaei2؛ Kourosh Parand* 2 | ||
| 1School of Mathematics and Computer Sciences, Damghan University, Damghan, P.O. Box 36715-364, Iran. | ||
| 2Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran. | ||
| چکیده | ||
| The primary objective of this research is to develop a neural network-based method for solving fractional differential equations. The proposed design incorporates a Gaussian integration rule and an $L1$ discretization technique for solving fractional (integro-) differential equations. In each equation, a multi-layer neural network is employed to approximate the unknown function. To demonstrate the versatility of the method, three forms of fractional differential equations are examined: a fractional ordinary differential equation, a fractional integro-differential equation, and a fractional partial differential equation. The results indicate that the proposed architecture demonstrates good accuracy for these different types of equations. | ||
| کلیدواژهها | ||
| Artificial Neural Networks؛ Machine-Learning؛ Partial-Differential Equations؛ Fractional Calculus | ||
| آمار تعداد مشاهده مقاله: 81 تعداد دریافت فایل اصل مقاله: 124 | ||