Research Paper

Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. *, No. *, * pp. 1-14
DOI:10.22034/cmde.2025.63059.2803

BE

A novel neural network architecture for solving fractional differential equations

Hassan Dana Mazraeh!, Ali Nosrati Firoozsalari2, Alireza Afzal Aghaei?, and Kourosh Parand?:3:4*
LSchool of Mathematics and Computer Sciences, Damghan University, Damghan,P.O. Box 36715-364, Iran.

2Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
3Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.

4International Business University, Toronto, Canada.

Abstract r)

The primary objective of this research is to develop a neural network-based method for solving fractional differen-
tial equations. The proposed design incorporates a Gaussian integration rule and an L1 discretization technique
for solving fractional (integro-) differential equations. In each equation, a multi-layer neural network is employed to
approximate the unknown function. To demonstrate the versatility of the method, three forms of fractional differ-
ential equations are examined: a fractional ordinary differential equation, a fractional integro-differential equation,
and a fractional partial differential equation. The results indicate that the proposed architecture demonstrates
good accuracy for these different types of equations.

Keywords. Artificial neural networks, Machine learning, Partial differential equations, Fractional calculus.

2010 Mathematics Subject Classification. 26A33,34K37,68T05.

1. INTRODUCTION

Fractional functional equations, characterized by the inclusion of one or more non-integer order derivative or integral
operators alongside the classical ones, represent a growing class of mathematical problems with significant applica-
tions. Such equations are instrumental in numerous branches of science and engineering, including physics, chemistry,
and cognitive sciences [25, 37]. For instance, they provide highly accurate models for complex phenomena such as
viscoelastic materials [13], electrochemistry [22] and Resistor-Inductor-Capacitor (RLC) circuits [27].

While these equations offer superior modeling capabilities, their solution presents considerable challenges. The com-
plexity increases further when integral operators are included. Analytical methods often prove insufficient for solving
such complex problems. Consequently, researchers have turned to semi-analytical methods, such as the Adomian
Decomposition Method (ADM) [11], the Variational Iteration Method (VIM) [21], and the Homotopy Perturbation
Method (HPM) [12]. However, these techniques often suffer from drawbacks, a primary one being slow convergence.
Numerical approaches like finite difference methods [17], meshless methods [18], and spectral methods [33] are also
widely used. Yet, these methods have their own inherent limitations. For instance, finite difference methods can suffer
from low accuracy, meshless methods may exhibit numerical instability, and spectral methods struggle with complex
geometries.

In recent years, neural networks, particularly through the framework of Physics-Informed Neural Networks (PINNs)
[26], have emerged as a powerful alternative for solving differential equations [7, 8]. In this paradigm, the governing
physical laws, expressed as a functional equation, are directly encoded as a residual term within the neural network’s
loss function. The network is then trained to minimize this loss function, yielding an approximate solution to the
problem. This framework is particularly potent when observational data is available, as neural networks can learn the
underlying system dynamics directly from this data [31]. For a functional equation (FE), possibly with fractional or

Received: 20 August 2024 ; Accepted: 10 September 2025.
* Kourosh Parand Email: k_parand@sbu.ac.ir.

2 H. DANA MAZRAEH, A. NOSRATI FIROOZSALARI, A. AFZAL AGHAEI, AND K. PARAND

integer-order derivatives and integrals, subject to a set of initial and boundary conditions, and incorporating known
data points, a PINN minimizes a composite loss function:

Losspinn (u(x)) = Losspr (u(X)) + Loss Boundaries (4(X)) + Lossrnitiar (u(X)) + Losspata(u(x)),

where u(x) is the output of a multi-layer neural network (DNN) [1, 9, 23, 26]. PINNs offer several advantages over
traditional methods: they can naturally incorporate data through Losspat, [31], handle high-dimensional problems
effectively [14], manage complex geometries without requiring mesh generation [36], solve nonlinear problems with
ease, and leverage parallel computing on hardware like Graphical Processing Units (GPUs) to accelerate training [26].

A cornerstone of the PINN framework is automatic differentiation (AD), an algorithm that computes exact deriva-
tives of the network’s output with respect to its inputs by traversing its computational graph. However, AD is
fundamentally incompatible with fractional derivatives and integrals, as these are non-local operators by definition.
This presents a significant difficulty for applying PINNs to fractional functional equations (fPINNs).

Several studies have attempted to bridge this gap. Some approaches involve developing neural networks within
symbolic computer algebra systems to leverage analytical methods for fractional operators. For example, Kheyrinataj
and Nazemi [15] solved fractional optimal control problems using a fractional power neural network, Allahviranloo et al.
[2] solved higher order fractional integro-differential equations of the Caputo type, and Chaharborj et al. [6] developed
a semi-analytical Chebyshev neural network for fractional integro-differential equations. Numerical discretization
methods are also studied. For example, Martire et al. [5] utilized Gaussian quadrature to approximate the Caputo
fractional derivative, Saadat et al. [28] employed the trapezoidal rule to approximate the Riemann-Liouville fractional
operator and Taheri et al. [34] developed operational matrices for approximating the Caputo derivative. Nevertheless,
these methods often suffer from numerical errors and poor stability because fractional operators are usually defined
as singular integrals.

To overcome these limitations, this paper introduces a PINN methodology for solving fractional differential equa-
tions, which may also include integral operators. Our proposed approach integrates an accurate finite difference
scheme, namely the L1 discretization, to approximate fractional derivatives [20], and employs Gaussian quadrature
for the efficient and precise computation of integral terms. This ensures that fractional derivatives are approximated
accurately. The proposed method is then evaluated on fractional differential equations in one and two dimensions,
and on a fractional integro-differential equation.

The remainder of this paper is organized as follows: Section 2 provides the necessary background on numerical
integration and fractional calculus, section 3 details the proposed methodology, and section 4 presents the numerical
results with their discussion. Finally, section 5 offers concluding remarks and outlines potential directions for future
research.

2. BACKGROUNDS

This section first describes the approximation of integer-order integral operators, followed by a discussion of frac-
tional derivatives and integrals defined through singular kernels. It then presents a finite difference approach that
replaces singular integration with a more precise discretization scheme.

2.1. Gauss-Legendre quadrature. In standard DNN frameworks, PINNs can not compute integrals directly due
to the nonlocal nature of integral operators. These operators must therefore be approximated by suitable numerical
schemes. Depending on the smoothness of the integrand and the integration domain, various methods are available,
including Newton-Cotes formulas, Gaussian quadrature, tanh-sinh quadrature, Monte Carlo approaches, and adaptive
techniques [10]. For sufficiently smooth functions over a finite interval, the Gauss-Legendre quadrature is both accurate
and straightforward to implement. Given a function u(x) defined on [a, b], the Gauss-Legendre rule takes the form:

/abu(x)d:cz/l u((b—a)t;—@—&-a)) (b;a) Ut~ (b;a) zn:wiu((b_a)ti; (b—l—a)>’ 2.1)

-1 i=1

where {t;}_; are the roots of the Legendre polynomial of degree n mapped to [—1,1], and w; = 2{(1 —¢2)[P!(¢;)]*} !
are the associated weights. This quadrature rule integrates exactly all polynomials of degree up to 2n — 1.

an

BE

CMDE Vol. *, No. *, * pp. 1-14 3

2.2. Fractional Derivatives. The definition of a non-integer order operator, whether a derivative or an integral,
in fractional calculus is not unique. Each physical phenomenon may require a particular type of fractional operator
suited to its specific properties. Some definitions, such as the Griinwald-Letnikov, rely on discrete summations; others,
including the Riemann-Liouville and Caputo, involve singular integrals, while operators like the Caputo-Fabrizio use
non-singular integrals [19]. Among these, the Caputo derivative is the most widely employed, as it recovers the
integer-order derivative when its fractional order approaches an integer. This operator is defined in terms of the
Riemann-Liouville fractional integral.

Definition 2.1 (Riemann-Liouville fractional integral). Let u € Cfa, b] and o € R*. The Riemann-Liouville fractional
integral of order a of w on [a, 2] is defined by
1 T
oLou(x) = @/a (x — 8)* tu(s)ds, (2.2)
where I'(a) denotes the gamma function given by

oo
I'a) :/ t*te7tdt, a>0.
0

Definition 2.2 (Riemann-Liouville fractional derivative). The Riemann-Liouville fractional derivative of order a > 0
is given by

1 d"
Dou(z) = — =
oDz u() I'(n—) dan

/I(m —s)"* Ly(s) ds, (2.3)

where n = [a] (the smallest integer greater than or equal to). In this formulation, the integral is evaluated first,
followed by the integer-order derivative.

Definition 2.3 (Caputo fractional derivative). In contrast, the Caputo fractional derivative of order o > 0 is defined
by [4, 32]:
1 X

CP%u(x) = F(n—a)/a (x—s)" ™ (s)ds, n—1<a<n, (2.4)
where the integer-order derivative of u is computed first, followed by the fractional integral. Compatibility with
classical integer-order derivatives is maintained in the limit o« — n under this definition.
Property 2.4. The Caputo fractional derivative satisfies the following fundamental properties for suitable functions
u and v:

e Linearity. For scalar constants a,b,
CP%au(z) +bv(z)] = a$2%(x) + b5 D%v(x).

e Partial derivatives. For u(x) with x = (21,...,24), the Caputo fractional partial derivative with respect to
x; is defined by:
1 i o™u
CPu(x) = —— xp—8)" T (% ds.
Com) = oy [@m0)
e Composition with integer derivatives. For integer n and a > 0,
d’n
c c
Cgntay(z) = To (§ Z5u(x)),
under suitable smoothness conditions.
e Action on monomials. For monomials u(z) = 2™ with m € N,

0, m < [a],
6 Ziu(w) = I'(m+1)

m—o > .
Tmiioa? o+ mzlal

4 H. DANA MAZRAEH, A. NOSRATI FIROOZSALARI, A. AFZAL AGHAEI, AND K. PARAND

To address the computational challenge of incorporating the Caputo fractional operator into PINNs, where au-
tomatic differentiation is not applicable, either Gaussian quadrature or robust numerical discretization methods can
be applied [3, 34]. However, Gaussian quadrature typically yields low accuracy because the Caputo derivative in-
volves a weakly singular kernel. The following section introduces the L1 discretization method, which produces higher
approximation accuracy for weakly singular fractional operators.

2.3. Ll-discretization. The L1 scheme is a widely adopted and well-analyzed method for approximating the Caputo
fractional derivative, particularly for orders 0 < a < 1. The derivation begins by discretizing the time domain into
uniform steps ¢; = jAt, and by evaluating the Caputo derivative at ¢t = ¢,,+1. For 0 < o < 1, the Caputo definition is:

€ gu(t >—1/t”“<t LRy (2.5)
0 Zt Ulln+1 _F(l—a) o n+1 S ds s)as. .

The L1 scheme approximates this integral by partitioning it into a sum over the discrete intervals [¢;,¢;11]. On each
interval, the integer-order derivative u’(s) is approximated by a first-order backward difference, u'(s) ~ W =

“jzt_“j. Substituting this piecewise constant approximation into the integral gives:

n

1 ti+1 wi Tt —
C g —a
Dty P — E ot - d
o Dfu(tns1) I(1l—a) : /tj (tnt1 —s) Al S

j=0
N gy [(s =)7
—W;;W—w{— s }
_ (A== = VIR N1-a Nl—a
—m;w*w)((nﬂ—ﬁ ~@=).

In the last step, we used the identity I'(z + 1) = 2I'(z), such that I'(2 —) = (1 — a)T'(1 — «).
Defining the coefficients b; = (j + 1)t~ — j1= for j > 0 and rearranging the summation produces the standard
L1 formula. The approximation at time ¢,41 is given by:

(br—j = b—jr)u’ | . (2.6)
1

(At)~

= |p n+1*b 0 _
I'2-a) ot N

J

§ Teultnn) ~

n

This formulation is numerically stable, with alocal truncation error thl that is well characterized [3]. For a sufficiently

smooth function u(t), the L1 scheme is known to have an order of accuracy of O(At?~%). Hence, the approximation
improves as the time step At decreases.

The coeflicients b; possess key properties that ensure the stability of the scheme. For 0 < o < 1, it can be shown
that b; > 0 for all j > 0. Furthermore, the sequence is monotonically decreasing, i.e., b;11 < bj, and converges to zero
as j — o0o. The first coefficient is always by = (1)1 — 0 = 1. The weights applied to the historical values of u decay
over time, ensuring consistency with the fading memory characteristic of systems modeled by fractional calculus.

3. METHODOLOGY

The previous section provided the necessary approximation strategies for evaluating integrals and the fractional
Caputo derivative. In this section, we employ these approximations to construct the proposed method. We handle the
integrals in two distinct categories. The first category arises from the definition of the Caputo fractional derivative,
which involves a weakly singular kernel of the form (z—s)~%; for these, we adopt the L1 discretization scheme, which is
particularly effective for addressing such singularities. Although the theoretical formulation involves singular kernels,
their discrete implementation within DNNs composes them with the smooth neural network output, ensuring that the
integrals remain well-behaved. This composition ensures that the resulting integrals remain well-behaved in practice,
which results in numerical stability. The second category includes integrals with sufficiently smooth kernels, where

(=)=
E)NE

CMDE Vol. *, No. *, * pp. 1-14 5

Gauss-Legendre quadrature provides an accurate and efficient numerical approximation due to its high precision for
smooth integrands.

To approximate the solution of a functional equation, we employ a standard feedforward neural network with tanh(-)
activation functions, whose output is denoted by @(-) and defined as

Ny, Np_1 Ny
ax) = > wl™ tann [Y wi Y tanh<---tanh<z wPzy +b§.1>> > ol] b, (3.1)
j=1 i=1 k=1

Here, L denotes the number of layers and /N, the number of neurons in the ¢-th layer. The trainable weights w;; and
biases b; are updated using the Adam optimizer:

m(™ = Bm(™=Y 4 (1 — By) Vg Loss(6™),

~ 2
00" = B0 4 (1= B) (Vg Loss(0™)),

) = I e 2 32
1-p87 1—- 83
i (m)

(m+1) _ g(m) _
’ ’ K \/W + 6,
where 6 collectively represents all weights and biases, 1 is the learning rate, 31, 82 are the exponential decay rates,
and € is a small positive constant. In this setting, derivatives required by the governing equation or with respect to
network parameters are computed by automatic differentiation in PyTorch. The fractional derivatives are discretized
using the L1 scheme, while integral terms are approximated by Gauss-Legendre quadrature; both depend only on the
network output 4(-). Figure 1 illustrates the diagram of the proposed method.

Residual Function

Numerical Solution Exact Derivative Values

Legendre ‘Li-discretization: AD
fﬁ(xl, e, Xy) dXg . D*U(xq, ..., %,))
o o 9%
fﬁ(xl, ey Xy) dxy .. dx, + DOU(X, ..., X)) dx; dx, Jx?
Discretization L Differentiation
Schemes

[Pmctiomzl Integro Dif ferential Equution]

FIGURE 1. A diagram illustrating the proposed method

We now explicitly define the general form of the fractional differential equations under consideration and the
corresponding loss functions. We consider three types of fractional differential equations to demonstrate the versatility
of our approach:

oG

6 H. DANA MAZRAEH, A. NOSRATI FIROOZSALARI, A. AFZAL AGHAEI, AND K. PARAND

(1) Fractional Ordinary Differential Equations (FODEs): We address FODEs of the form:
§ Z5u(x) + f(z,u(z)) =0, =€ la,b], ac(0,1),

where § 2% denotes the Caputo fractional derivative of order o, u(z) is the unknown function, and f(x, u(x))
is a possibly nonlinear function. The equation is subject to initial conditions, e.g., u(a) = k. The loss function
associated with FODEs is as follows:

Loss = A1Lossresidual + A2L0SStnitial, (3.3)

where:

LOSSResidual = (chgu(wz) + f(xm u(xi)))Q)

Lossnitiar = (G(a) — k)?, keR

where 4(z) is the output of the network approximating u(x), A1 and Ae are hyperparameter in R.
(2) Fractional Partial Differential Equations (FPDEs): We consider FPDEs of the form:

SDeu(x,t) + Lu(x,t) = g(x,t), (x,t) € Qx[0,T], € (0,1),

where § 2¢ is the Caputo fractional time derivative, £ is a spatial differential operator (e.g., 9*/9x2), and
g(x,t) is a source term. Boundary conditions (¢1(x) and ¢2(z)) and initial condition (£(t)) are specified on
the domain 2 x {0}.

The loss function associated with FPDEs is as follows:

Loss = A1 Lossgresidgual + A2LoSSrnitial + /\3LOSSBoundary7 (34)
where:
R . 2
LOSSResidual = (chao:éu(xlv t]) + [«U(Z‘i, t]) - g(l‘i, t])) 2
Loss nitiar = (4(a, t;) — £(t))°,

LOSSBoundary ((l'zv) ¢1(xz)) ('LL(SU“ b) i (252(1'2))2)

where £(t), ¢1(x), p2(x) are known functions, @(z,t) is the output of the network approximating u(z,t), A1,
Ao, and A3 are hyperparameters in R.
(3) Fractional Integro-Differential Equations (FIDEs): We solve FIDEs of the form:

S D u(/sz s)ds = h(z), wu(a)=kr, x€]lab], aec(0,1),

where K (z,s) is a smooth kernel of the integral term, and h(x) is a given function, with appropriate initial or
boundary conditions.
The loss function associated with FIDEs is as follows:

Loss = A\ Lossresidual + A2LosSnitial, (3.5)

where:
LosSresidual = (@aA(xz 1'1 / K £L' S d) ,

N 2
Lossinitial = (G(a) — k)", kK ER,
where 4(z) is the output of the network approximating u(z), A1 and Ay are hyperparameters in R.
In either case, we consider the following assumptions:

e The solution 4(z, t) is assumed to be sufficiently smooth in space and time to allow differentiation and numerical
approximation using neural networks.

e The fractional derivative is taken in the Caputo sense, and the order a € (0,1] is fixed for each problem
instance.

e Initial and boundary conditions (as applicable) are assumed to be known and well-defined for each problem.

(=)=
E)NE

CMDE Vol. *, No. *, * pp. 1-14 7

e The neural network approximator @(z) or @(z,t) is trained by minimizing a composite loss function that
incorporates the residual of the differential equation, the boundary conditions, and the initial conditions.

In each iteration of the proposed method, a random point x; is generated in Q2 = [a, b] and the value 4(z;) is calculated
using the neural network. The random value is then chosen as the maximum value in both the integration scheme
and to estimate the fractional derivative. The equation is considered part of the loss function, and the parameters are
learned using the squared error of the values in each equation and the initial and boundary conditions. The shared
parameters will be learned by minimizing the loss function using the Adam optimizer. Figure 2 illustrates the main
flow diagram of the proposed framework. The methodology is applied to specific examples in section 4, including one
FODE, one FPDE, and one FIDE, to validate the approach.

Hidden ‘Layers
Input vector
(independent variables) 5 | &
> oS ~
B .- A(Xq, o) X)
= 15 [= —
5 5
a = l l
]
[Calculating partial derivatives: umerical computation
oa o 9%
dx; " 0x, Ax2
(Computing D“@(xy, ..., x,) | |computing [(xy, ..., X,)dx; ... dx,
sing L1 discretization Jusing Gauss-Legendre method
method
Update 6 I J
¥
I Computing LOSSgesidual I
0L0SStotal]
00 I Computing LoSSynitial I
I Computing LoSSpoundary I
No LoSStota = A1L0SSpesiqua + A2 L0SSmiciats + AzLo: y |
Has the termination T

condition been met?

Report the results | 0: Network parameters

FIGURE 2. The main flow diagram of the proposed framework.

4. NUMERICAL RESULTS

In this section, some examples are investigated and solved using the given methods to demonstrate the efficacy of the
proposed method. To demonstrate the generality of the proposed method, we have selected some different examples
from different classes of fractional order differential equations, including a fractional order differential equation, a
fractional order integro-differential equation, and a fractional order partial differential equation. Before proposing the
numerical results, we discuss the training configurations.

4.1. Network and Training Configuration. In all experiments, we used a fully connected feedforward neural
network consisting of five layers with 32 neurons in each hidden layer. The activation function used for all layers
was the hyperbolic tangent function tanh(-). The networks were implemented in PyTorch. For training, the Adam
optimizer was employed with learning rates chosen empirically for each example to ensure fast convergence:

e Example 1: learning rate = 0.01
e Example 2: learning rate = 0.005
e Example 3: learning rate = 0.001

8 H. DANA MAZRAEH, A. NOSRATI FIROOZSALARI, A. AFZAL AGHAEI, AND K. PARAND

The batch size was set equal to the number of training points (full-batch gradient descent), and the number of training
epochs was 1000 unless otherwise noted. The number of quadrature points in the Gauss-Legendre method and the
number of discretization points for L1 are carefully chosen to achieve a balance between computational cost and
numerical accuracy. Our experiments indicate that beyond a certain threshold, increasing the number of points does
not produce significant gains, which supports the efficiency and robustness of the proposed approach. All experiments
were conducted using a standard desktop with an NVIDIA 1080 GPU, and training times were on the order of minutes
for each example. Specifically, training for Example 1 took approximately 2 minutes, Example 2 took 3 minutes, and
Example 3 took 5 minutes. Once trained, the proposed network can provide solutions almost instantaneously for new
input points, typically within milliseconds. Table 1 presents a summary of neural network architecture and training
hyperparameters for each example. Furthermore, all hyperparameters \; are set to 1.

TABLE 1. Summary of neural network architecture and training hyperparameters for each example.

Example Hidden Layers Neurons Activation Optimizer Learning Rate Epochs Batch Size
1 3 32 Tanh Adam 0.01 1000 Full batch
2 3 32 Tanh Adam 0.005 1000 Full batch
3 3 32 Tanh Adam 0.001 2000 Full batch

Example 4.1. First, we consider a fractional ordinary differential equation as follows [24]:

xa—i—l

2
)), 0<a<l 0<z<1. (4.1)

SPeu(x) +u*(x) = o + (F(a+2

The initial condition for this equation is ©(0) = 0 and the exact solution is u(x) = mm““. The loss function will
consist of the initial condition and the equation itself:
Loss = LosSgesidual + LOSSnitiat, (4.2)
where:
2
C ooz ~2 x;lJrl ’
LosSgesidual = | o Zot(x;) + 4 (x;) — z; = CED] ,

Lossrnitiar = (1(0))% .

The results are presented in Table 2, where the absolute error is calculated for different values for o with n = 1000
discretization points and 1000 epochs. Figure 3 depicts the exact and predicted solution to the presented problem,
along with the residual. According to our experiments, the best results are achieved when « is 0.5 for different values
of x. Since we already have an initial condition, it is expected to have better results initially, and we can observe it
in the results presented in Table 2. The accuracy did not improve after increasing epochs further than 1000 epochs.
Based on our experiments, we converged the fastest using the learning rate of 0.01.

Example 4.2. Now we consider a fractional integro-differential equation [35]:

g@gﬁu(a:):u(x)—ksin(%s)xm—x?—%m?’—!—/ u(t)dt, 0<x<l,
0
u(0) =0,

(4.3)

The exact solution to this equation is u(x) = 2. The loss function of PINN will consist of the initial condition and
the equation itself:

Loss = LOSSResidual + Losslnitialv

where
8 @i 2
<§@§'5a (z;) — 0 (x;) — mx}*’ + 27 + sxd - /O @ (t) dt,) , (4.4)
an
Ba

CMDE Vol. *, No. *,

* pp. 1-14

TABLE 2. Absolute error for different values of o and 1000 epochs for Example 4.1.

N 0.1 0.3 0.5 0.7 0.9
0 3.23 x 10~° 7.14 x 1076 6.25 x 1076 3.43 x 10~° 6.31 x 10~°
0.1 1.45 x 107° 7.75 x 1075 1.86 x 107° 412 x 1075 1.11 x 1074
0.2 2.51 x 1074 5.37 x 1075 1.42 x 107° 3.04 x 10~° 7.69 x 1075
0.3 8.31 x 1075 6.13 x 1075 4.44 x 1075 1.49 x 1073 1.42 x 104
0.4 1.25 x 10~* 2.33 x 1075 1.92 x 107° 1.21 x 1073 2.15 x 10™4
0.5 1.56 x 10~° 2.59 x 10~° 8.61 x 1076 1.89 x 106 2.37 x 1074
0.6 9.12 x 10~° 2.40 x 1076 2.46 x 1075 2.39 x 10~° 212 x 1074
0.7 4.85 x 107° 3.96 x 10~° 2.54 x 1075 2.42 x 10~° 1.83 x 1074
0.8 2.86 x 10~° 2.48 x 1075 9.58 x 1076 1.28 x 107° 1.91 x 10~*
0.9 3.38 x 1075 1.59 x 10~° 2.11 x 1075 1.31 x 1073 2.31 x 1074
1 1.18 x 10~* 3.73 x 1075 2.95 x 1075 1.11 x 10~° 2.11 x 10~4
1.0 T T T T
—— Exact (v =0.1) * Pred. (a=0.1) 0.0004 ¢ Error (o =0.1)
—— Exact (o =0.3) * Pred. (a =0.3) Error (o = 0.3)
0.8+ — Exact (a =0.5) * Pred. (a=0.5) Error (o= 0.5
—— Exact (o =0.7) * Pred. (a« =0.7) 0.0002 -
—— Exact (a = 0.9) * Pred. (a=0.9)
0.6 -
s = 0.0000
- 0.4 mﬂ)
—0.0002
0.2
—0.0004
0.0
0.‘0 012 Ui/t 0.‘6 018 110 0‘.0 012 014 0‘.6 018 110
FI1GURE 3. Predicted solutions and their residual using various values of o for Example 4.1.
and

Loss nitiar = (4(0))? (4.5)

The results are presented in Table 3 with varying numbers of discretization points. Figure 4 depicts the predicted and
exact solutions, and the residual graph for 1000 epochs. This equation consists of a fractional part and an integral term.
The fractional component is calculated with various numbers of discretization points as shown in Table 3; however,
we have utilized 400 discretization points in the Gauss-Legendre method to estimate the integral part. The rationale
behind choosing 400 discretization points is that if we were to use any further discretization points, the accuracy
would not change considerably; on the other hand, the time complexity would increase dramatically. According to
our experiments, a reasonable trade-off between accuracy and time complexity is reached at 400 discretization points.
As it is evident from Table 3, in general, the accuracy of the model decreases as x approaches 1. This is due to the
fact that we have an initial condition for this problem at x = 0. In general, augmenting the quantity of discretization
points leads to enhanced accuracy in the model. Nevertheless, due to the resultant escalation in time complexity, we
have selected to set the top limit at 1000 points for our experimental purposes. The conducted tests have shown that
the observed trade-off between the execution time and accuracy of the model is favorable. Based on our experiments,
we converged the fastest using the learning rate of 0.005. Additionally, in this example we use a polynomial layer as
part of our neural network to estimate the answer. The first layer has 6 outputs from 2 up to 2% and these polynomial

(&)
ENE

10

H. DANA MAZRAEH, A. NOSRATI FIROOZSALARI, A. AFZAL AGHAEI, AND K. PARAND

features are fed into another layer with a linear transformation, then through a tanh(-) activation function which can
help the model learn to predict the answer.

N — ; ; 7 sous ; ; ;
== Predict
0.0004 |
0.8F]
0.0002 -
0.6]
5 < 0.0000
® =
04t .
—0.0002 f
0.2F —0.0004 |
0.0F] —0.0006 Error 1
0.0 02 04 08 0.0 04 08 1.0
FIGURE 4. Predicted solution and its error for Example 4.2.
TABLE 3. Absolute error for Example 4.2 with different discretization points and 1000 epochs.
N 100 250 500 750 1000
0 222 x 1073 1.19x 1073 1.30 x 1073 5.94 x 1074 2.26 x 1073
0.1 1.01 x 1072 6.55 x 1073 1.64 x 1073 2.36 x 1073 1.44 x 1073
0.2 1.02 x 1072 7.02x 1073 2.62 x 1073 2.47 x 1073 1.42 x 1073
0.3 6.48 x 1073 497 x 1073 2.40 x 1073 1.46 x 1073 2.94 x 1074
0.4 2.45 x 1073 2.46 x 1073 2.17 x 1073 6.45 x 10~* 1.75 x 1073
0.5 3.29 x 1074 8.79 x 1074 3.02 x 1073 6.67 x 1074 1.58 x 1073
0.6 2.24 x 1074 5.26 x 1074 4.87 x 1073 1.41 x 1073 1.72 x 1074
0.7 4.38 x 107* 6.07 x 104 5.92 x 1073 2.22 x 1073 1.87 x 1073
0.8 5.05 x 1074 1.80 x 10~ 4.47 x 1073 2.57 x 1073 1.76 x 1073
0.9 2.73x 1073 8.18 x 1074 1.89 x 1073 2.72x 1073 1.09 x 1073
1 9.65 x 1073 8.60 x 1073 7.86 x 107* 1.90 x 1073 2.16 x 1073
Example 4.3. Finally, we consider an initial-boundary problem of fractional partial differential equation [29]:
0%u(x,t) ou(z,t) 0%u(z,t) 5
: d Tl =2t + 2 2, 0 1,0<t<1 4.6
o max+ax2 + 22° + 2, <r<l,0<t<l, (4.6)
where « is between 0 and 1, the initial condition is u(x,0) = 22 and the boundary conditions are: u(0,t) =

I'(a+1) ,2q o T'(a+1) ,2q
2F(2a+1)t2 ,and u(l,t) =1+ 2F(2a+1)t2 .

The loss function will consist of the initial condition, and the equation itself is as follows:

Loss = LosSRgesidual + L0SStnitial + L0SS Boundary,

(=)=
E)NE

CMDE Vol. *, No. *, * pp. 1-14 11

o*a(x,t) Oa(xz,t) 0%z, t) . . 2
Lossgesidual = (It +x ox + o2 =217 =227 =2 ’
LosSrnitial = (’IAL(!E“ 0) - 1"7,2)2)

Pla+1) 5\ Pla+1) 5\

TABLE 4. Comparison of mean absolute error between Wavelet Method and our method for a=0.5
and t=0.5 in Example 4.3.

LOSSBoundary = (ﬁ(O,t]‘) =2

Wavelet Method

[30] Presented Method

X
m = 32 m = 64
0.1 6.09 x 1073 1.21 x 1073 8.43 x 1073
0.2 4.84 x 1073 1.25 x 1073 8.45 x 1073
0.3 2.75 x 1072 1.86 x 1073 7.64 x 1073
0.4 1.93 x 1072 7.41 x 1073 6.19 x 103
0.5 1.00 x 10~ 1.00 x 106 4.45 x 1073
0.6 4.35 x 1072 7.46 x 1073 2.73 x 1073
0.7 1.73 x 1072 1.72 x 1073 1.23 x 1073
0.8 7.75 x 1072 4.99 x 1073 8.98 x 1073
0.9 4.44 x 1072 1.67 x 1072 5.91 x 1074
Predict Exact

| 25
= F 2.0
X - 1.5 .
) :
- 1.0
- 0.5
~ 0.0
1.0
0.8
0.6
0.0 0.2 0.4 y
0.6 0.2
0.8
X 1.0 0.0

FIGURE 5. Predicted solution and the exact solution for Example 4.3 with 2000 epochs.

The results presented in Table 5 and Figure 5 show the approximate solution obtained by the current method

using n = 100 discretization points along with the exact solution. The comparison between the obtained solutions

(&)
E[E

12

H. DANA MAZRAEH, A. NOSRATI FIROOZSALARI, A. AFZAL AGHAEI, AND K. PARAND

TABLE 5. Mean absolute error for Example 4.3 with different values for x and ¢ and 1000 epochs.
t
X 0.1 0.3 0.5 0.7 0.9
0 8.07 x 1073 1.65 x 102 7.71 x 1073 3.81 x 1073 1.13 x 102
0.1 6.34 x 1073 1.59 x 102 8.43 x 1073 2.49 x 1073 1.07 x 102
0.2 4.67 x 1073 1.44 x 102 8.45 x 1073 1.12 x 103 8.95 x 1073
0.3 2.91 x 1073 1.21 x 1072 7.64 x 1073 7.14 x 1075 6.59 x 1073
0.4 1.11 x 1073 9.19 x 1073 6.19 x 1073 6.34 x 10~4 3.93 x 1073
0.5 6.15 x 10~ 6.10 x 1073 4.45 x 1073 1.14 x 1073 1.09 x 103
0.6 2.09 x 1073 3.18 x 1073 2.73 x 1073 1.58 x 103 1.85 x 1073
0.7 3.15 x 1073 6.91 x 10~* 1.23 x 1073 2.07 x 1073 4.88 x 1073
0.8 3.67 x 1073 1.19 x 1073 8.98 x 1075 2.70 x 1073 8.01 x 1073
0.9 3.51 x 1073 2.36 x 1073 5.91 x 10~* 3.60 x 10~3 1.14 x 10~2
1 2.56 x 1073 273 x 1073 6.55 x 10~4 4.98 x 103 1.52 x 1072

and the Wavelet method is also provided in Table 4. In comparison to the wavelet method, our presented method is
more reliable and consistent, as we can observe that the accuracy of the Wavelet method fluctuates highly at different
internal points; however, the accuracy of our method changes smoothly. “Furthermore, since we have a boundary
condition at x = 1, we expect to have better accuracy around this point, and the results are in total agreement with
this fact. Increasing the number of discretization points often results in improved accuracy in the model. However,
as a consequence of the increased complexity of computation, we have made the decision to establish a maximum
restriction of 1000 points for our experimental objectives. The experiments undertaken have shown that there exists
a good trade-off between the execution time and accuracy of the model. The results of our trials indicate that the
most rapid convergence was achieved while using a learning rate of 0.001.

The obtained results demonstrate that the current method can reliably evaluate the solution to the presented
problem.

5. CONCLUSION

Solving the fractional differential equations using neural networks is a challenging task, especially considering that
many fractional definitions have a singular kernel and cannot be directly computed. In this paper, we propose a
framework to solve the fractional differential equations using L1 discretization and the Gauss-Legendre discretization
to discretize the integral component. The method can be used in several different fields, including biological systems,
medical imaging, stock prices; and control systems [16]. To demonstrate the effectiveness of the model, we consid-
ered several fractional equations, including an ODE, a PDE, and an integro-differential equation. Solving fractional
equations using neural networks is a relatively new research area, and while previous works have contributed to this
field, a solid framework for obtaining effective solutions to these equations remains lacking. By utilizing the aforemen-
tioned methodologies, we have developed a new and reliable framework to calculate the solutions to these equations.
While earlier studies primarily addressed fractional differential equations without explicitly discretizing integral terms,
our approach incorporates both Gauss—Legendre quadrature for nonlocal integral evaluation and the L1 scheme for
Caputo-type fractional derivatives. Future extensions may involve exploring alternative integration rules, such as
Gauss—Lobatto quadrature or adaptive schemes, as well as employing higher-order fractional discretizations like the
L1 — 2 method. Our findings demonstrate that different discretization methods can be efficiently incorporated into
a neural network; nevertheless, the effectiveness and usability of the method can be affected by parameters such as
the depth of the neural network, activation functions, and the overall structure of the network. Using specialized
quadrature schemes designed for weakly singular kernels (such as Gauss-Jacobi quadrature or adaptive quadrature)
could be more accurate in theory, and we plan to explore these alternatives in future works. However, for the scope of
the current paper, our numerical evidence justifies the use of Gauss-Legendre quadrature in this PINN-based architec-
ture. Furthermore, the effectiveness of different discretization methods in solving various fractional definitions is yet

(=)=
E)NE

REFERENCES 13

another subject that can be investigated in future work; nonetheless, the choice of the specific discretization method
may depend on the specific characteristics of the equation and the structure of the neural network, notably the order
of the fractional equation, the convergence order of the method, and the computational complexity of the method,
which could in some cases severely hinder the speed and performance of our model. Finally, our findings suggest that
the proposed method and, in general, discretization methods are very valuable and could serve as a strong foundation
for further research in this area.

ACKNOWLEDGMENT

We would like to thank Amir Hossein Hadian Rasanan for introducing us to the concepts of PINNs and fPINNs,
and also Dr. Fatemeh Baharifard for her useful insights. Their introduction inspired us to further investigate these
areas.

AUTHOR CONTRIBUTION

Hassan Dana Mazraeh: Writing - Original Draft, Writing - Review & Editing, Software, Methodology;
Ali Nosrati Firoozsalari: Writing - Original Draft, Software, Methodology;

Alireza Afzal Aghaei: Writing - Review & Editing, Methodology, Software;

Kourosh Parand: Supervision, Resources, Validation.

REFERENCES

[1] A. A. Aghaei, K. Parand, A. Nikkhah, and S. Jaberi, Solving Falkner-Skan type equations via Legendre and
Chebyshev Neural Blocks, arXiv preprint arXiv:2308.03337, (2023).

[2] T. Allahviranloo, A. Jafarian, R. Saneifard, N. Ghalami, S. Measoomy Nia, F. Kiani, U. Fernandez-Gamiz, and
S. Noeiaghdam, An application of artificial neural networks for solving fractional higher-order linear integro-
differential equations, Boundary Value Problems, 2023.1(74) (2023).

[3] J. Cao, C. Li, and Y. Chen, High-order approzimation to Caputo derivatives and Caputo-type advection-diffusion
equations (II), Fractional calculus and Applied analysis, 18(3) (2015), 735-761.

[4] M. Caputo, Linear Models of Dissipation whose @Q is almost Frequency Independent—II, Geophysical Journal
International, 13(5) (1967), 529-539.

[5] M. Cenci, M. Alessandra Congedo, A. Luciano Martire, and B. Rogo, Fractional Volterra Integral Equations: A
Neural Network Approach,Roma TrE-Press, 1(1) (2022).

[6] S. S. Chaharborj, S. S. Chaharborj, and Y. Mahmoudi, Study of fractional order integro-differential equations by
using Chebyshev neural network, J. Math. Stat, 13(1) (2017), 1-13.

[7] H. Dana Mazraeh and K. Parand, Approzimate symbolic solutions to differential equations using a novel combi-
nation of Monte Carlo tree search and physics-informed neural networks approach, Engineering with Computers,
(2025).

[8] H. Dana Mazraeh and K. Parand, An innovative combination of deep Q-networks and context-free grammars for
symbolic solutions to differential equations, Engineering Applications of Artificial Intelligence, 142 (2025), 109733.

[9] H. Dana Mazraeh and K. Parand, A three-stage framework combining neural networks and Monte Carlo tree
search for approzimating analytical solutions to the Thomas—Fermi equation, Journal of Computational Science,
87 (2025), 102582.

[10] Ph. J. Davis and Ph. Rabinowitz, Methods of numerical integration, Courier Corporation, 2007.

[11] J. Sh. Duan, R. Rach, D. Baleanu, and A. M. Wazwaz, A review of the Adomian decomposition method and its
applications to fractional differential equations, Communications in Fractional Calculus, 3(2) (2012), 73-99.

[12) Kh. A. Gepreel, The homotopy perturbation method applied to the nonlinear fractional Kol-
mogorov—Petrovskii—Piskunov equations, Applied Mathematics Letters, 24(8) (2011), 1428-1434.

[13] N. Heymans and J. -C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic
behavior, Rheologica acta, 33 (1994), 210-219.

[14] Z. Hu, Kh. Shukla, G. E. Karniadakis, and K. Kawaguchi, Tackling the curse of dimensionality with physics-
informed neural networks, Neural Networks, 176 (2024), 106369.

(&)
ENE

14

[15]
[16]
[17]
18]
[19]
[20]
[21]
[22]
23]
[24]
[25]

[26]

[27]

[28]

[29]

REFERENCES

F. Kheyrinataj and A. Nazemi, Fractional power series neural network for solving delay fractional optimal control
problems, Connection Science, 32(1) (2020), 53-80.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,
North-Holland Mathematics Studies, 2006.

Ch. Li and F. Zeng, Finite difference methods for fractional differential equations, International Journal of Bifur-
cation and Chaos, 22(4) (2012), 1230014.

Q. Liu, Y. T. Gu, P. Zhuang, F. Liu, and Y. F. Nie, An implicit RBF meshless approach for time fractional
diffusion equations, Computational Mechanics, 48 (2011), 1-12.

K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley,
1993.

A. Nosrati Firoozsalari, A. Afzal Aghaei, and K. Parand, A machine learning framework for efficiently solving
Fokker—Planck equations, Computational and Applied Mathematics, 43(6) (2024).

Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of
fractional order, International Journal of Nonlinear Sciences and Numerical Simulation, 7(1) (2006), 27-34.

K. B. Oldham, Fractional differential equations in electrochemistry, Advances in Engineering software, 41(1)
(2010), 9-12.

K. Parand, A. A. Aghaei, S. Kiani, T. Ilkhas Zadeh, and Z. Khosravi, A neural network approach for solving
nonlinear differential equations of Lane—Emden type, Engineering with Computers, 40(1) (2023), 953-969.

P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Ap-
plied Mathematical Modelling, 40(17) (2016), 8087-8107.

M. Rahimy, Applications of Fractional Differential Equations, Applied Mathematical Sciences, 4(50) (2010), 2453-
2461.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational
Physics, 378 (2019), 686-707.

A. Rohul, S. Kamal, A. Muhammad, I. Khan, and F. Ullah, An efficient algorithm for numerical solution of
fractional integro-differential equations via Haar wavelet, Journal of Computational and Applied Mathematics,
381 (2021), 113028.

M. Saadat, M. Deepak, and S. Jamali, UniFIDES: Universal fractional integro-differential equations solver, APL
Machine Learning, (1) (2025), 16116.

A. Saadatmandi, M. Dehghan, and M. Azizi, The Sinc-Legendre collocation method for a class of fractional
convection—diffusion equations with wvariable coefficients, Communications in Nonlinear Science and Numerical
Simulation, 17(11) (2012), 4125-4136.

R. Schumer, M.M. Meerschaert, and B. Baeumer, Fractional advection-dispersion equations for modeling transport
at the Earth surface, Journal of Geophysical Research: Earth Surface, 114(F4) (2009).

P. Shaeri, S. AlKhaled; and A. Middel, A multimodal physics-informed neural network approach for mean radiant
temperature modeling, arXiv:2503.08482, (2025).

T. Taheri, A. A. Aghaei, and K. Parand, Bridging machine learning and weighted residual methods for delay
differential equations of fractional order, Applied Soft Computing, 149 (2023), 110936.

T. Taheri, A. Afzal Aghaei, and K. Parand, A new kernel-based approach for solving general fractional (integro)-
differential-algebraic equations, Engineering with Computers, 41 (2025), 845-864.

T. Taheri, A. Afzal Aghaei, and K. Parand, Accelerating fractional PINNs using operational matrices of derivative,
arXiv:2401.14081, (2024).

A. Toma and O. Postavaru, A numerical method to solve fractional Fredholm-Volterra integro-differential equa-
tions, Alexandria Engineering Journal, 68 (2023), 469-478.

M. Wang, H. Li, H. Zhang, X. Wu, and N. Li, PINN-MG: A physics-informed neural network for mesh generation,
arXiv:2503.00814, (2025).

M. Zaslavsky, Some applications of fractional equations, Communications in Nonlinear Science and Numerical
Simulation, 8(3) (2023), 273-281.

(=)=
E)NE

	1. Introduction
	2. Backgrounds
	2.1. Gauss-Legendre quadrature
	2.2. Fractional Derivatives
	2.3. L1-discretization

	3. Methodology
	4. Numerical Results
	4.1. Network and Training Configuration

	5. Conclusion
	Acknowledgment
	Author Contribution
	References

