
تعداد نشریات | 45 |
تعداد شمارهها | 1,398 |
تعداد مقالات | 17,064 |
تعداد مشاهده مقاله | 55,046,898 |
تعداد دریافت فایل اصل مقاله | 17,494,588 |
Optimal solution of the nonlinear time fractional diffusion-wave equation using generalized Laguerre polynomials | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 مرداد 1404 اصل مقاله (1.6 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.66412.3097 | ||
نویسندگان | ||
Narges Goudarzian1؛ Hossein Hassani2؛ Mohammad Shafi Dahaghin* 1 | ||
1Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran. | ||
2Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. | ||
چکیده | ||
Determining the numerical solutions of a nonlinear fractional differential equation has been of interest for a long time. In this study, by choosing the appropriate basis functions according to the linear combination of generalized Laguerre polynomials (GLPs), we investigate the optimization method with Lagrange coefficients for approximating the solution in combination with the derivative operation matrices. Achieving the exact solution while using less basic functions is one of the prominent features of this method. This feature and high accuracy make the use of this method inevitable. In the end, we examine the application of the mentioned method in determining the approximate solution of the nonlinear time fractional diffusion-wave equation for different values of Alfa. | ||
کلیدواژهها | ||
Fractional calculus؛ Fractional diffusion-wave equation؛ Generalized Laguerre polynomials؛ Caputo fractional derivative؛ Control parameters | ||
آمار تعداد مشاهده مقاله: 2 تعداد دریافت فایل اصل مقاله: 3 |