
تعداد نشریات | 45 |
تعداد شمارهها | 1,398 |
تعداد مقالات | 17,064 |
تعداد مشاهده مقاله | 55,046,909 |
تعداد دریافت فایل اصل مقاله | 17,494,598 |
A study of weighted $b$-spline method for solving nonlocal subdiffusion model | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 مرداد 1404 اصل مقاله (1.74 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.66680.3142 | ||
نویسندگان | ||
Jitesh P. Mandaliya* 1؛ Deelip Kumar2 | ||
1Department of Mathematics, Institute of Infrastructure, Technology, Research and Management, Ahmedabad, Gujarat, India. | ||
2Department of Mathematics, Government Post Graduate College Noida, Uttar Pradesh, India. | ||
چکیده | ||
In this study, we employ weighted $b$-splines to obtain the numerical solution for the nonlocal subdiffusion equation widely used in population dynamics. For spatial discretization, we utilize weighted \( b \)-spline method that is computationally efficient, providing accurate results with fewer parameters. The temporal discretization is performed using \( L1 \) and \( L2 \)-\( 1_\sigma \) schemes on a graded mesh. We establish the existence, uniqueness, and regularity of the solution at the continuous level. Furthermore, we derive \emph{a priori} error bounds and convergence estimates in both \( L^2(\Omega) \) and \( H_0^1(\Omega) \) norms using a \( \alpha \)-robust discrete Gronwall inequality. The theoretical findings are validated through three numerical examples. | ||
کلیدواژهها | ||
Mesh-free method؛ Weighted $b$-spline؛ $L1$ and $L2$-$1_\sigma$ methods | ||
آمار تعداد مشاهده مقاله: 2 تعداد دریافت فایل اصل مقاله: 2 |