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Abstract

In this study, we employ weighted b-splines to obtain the numerical solution for the nonlocal subd-
iffusion equation widely used in population dynamics. For spatial discretization, we utilize weighted

b-spline method that is computationally efficient, providing accurate results with fewer parameters.

The temporal discretization is performed using L1 and L2-1σ schemes on a graded mesh. We establish
the existence, uniqueness, and regularity of the solution at the continuous level. Furthermore, we derive

a priori error bounds and convergence estimates in both L2(Ω) and H1
0 (Ω) norms using a α-robust

discrete Gronwall inequality. The theoretical findings are validated through three numerical examples.
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1. Introduction

The present research work focuses on solving the following nonlocal subdiffusion equation:

c
0D

α
t u−M

(∫
Ω

u dx

)
∆u = f(x, t) in Σ, (1.1a)

u(x, t) = 0 on ∂Σ, (1.1b)

u(x, 0) = u0(x) in Ω (1.1c)

where Ω ⊆ R2 is a bounded domain with sufficiently smooth boundary ∂Ω, and Σ = Ω × (0, T ],
∂Σ = ∂Ω × (0, T ]. The term c

0D
α
t u(x, t) is the αth-order Caputo fractional derivative of u with α ∈ (0, 1],

and it is defined [9] as

c
0D

α
t u(x, t) :=

{
1

Γ (1−α)

∫ t

0
(t− s)−α ∂u(x,s)

∂s ds for 0 < α < 1,
du(x,t)

dt for α = 1.

The nonlocal diffusion term frequently arises in the modeling of various physical and biological phenomena.
For instance, while modeling the dynamics of bacterial population through (1.1a), u represents the density
of the bacterial population, and the nonlocal term M is the diffusion coefficient that depends on the char-
acteristic of density of the population across the entire domain [4, 8]. Fractional-order differential equations
naturally connect to memory-related models, particularly those describing anomalous diffusion phenom-
ena frequently observed in various scientific fields, such as the diffusion of pollutants in the atmosphere,
fluctuations in stock prices, and the movement of proteins within cells [21, 25].

Since analytical solutions for time-fractional PDEs are known only for special cases, some efficient nu-
merical techniques are required to solve such problems. Several research articles propose various numerical
methods to solve time-fractional differential equations. The L1 method [2, 6, 9, 28, 30] and the L2-1σ
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method also known as the fractional Crank-Nicolson method [1, 7, 16, 29], have been widely used for tem-
poral discretization and finite element method (FEM) [17, 18, 22], finite difference method [30], mixed FEM
[15], etc., are commonly used for spatial discretization. Among these methods, the FEM has been explored
significantly for solving a variety of fractional PDEs.

The authors in [18] considered a nonlinear time-fractional diffusion equation in terms of the Caputo
fractional derivative of order α ∈ (0, 1). They discussed the well-posedness as well as the regularity of the
solution by employing the Lipschitz continuity of the nonlinear source term. In the case of weak singularity
at time t = 0 for the solution of a subdiffusion equation, the L1 method-based scheme on a uniform grid
provides only O(τα) convergence order in the maximum norm (cf. [18]), where τ denotes the time step size.
M. Stynes et al. [30] considered a linear subdiffusion equation and solved it by taking the weak singularity
into account at initial time t = 0. They analyzed the problem using the L1-finite difference method on a
graded mesh and provided sharp convergence results for the numerical solution in the L∞(Ω) norm. In [27],
the authors utilized a cubic spline difference scheme for spatial discretization and the L1 scheme on a graded
mesh for temporal discretization to obtain a robust fully-discrete scheme for solving the time-fractional
reaction-diffusion equations. Furthermore, the standard finite element technique on a quasi-uniform mesh
in the spatial direction and the L1 method on a suitably graded mesh in the temporal direction is employed
in [5] to achieve the optimal convergence of O(τ2−α) in the temporal direction. Additionally, in [5], the
authors derived α-nonrobust error estimate for problem (1.1). Unlike [5], in this paper, we derive α-robust
error estimate for the problem (1.1).
L1 based scheme for fractional differential equation results in convergence O(τ2−α) clearly signifying an

inverse relation with α i.e., larger(smaller) α values give slower(faster) convergence rate. To overcome this
limitation and to obtain optimal order in the temporal direction, Alikhanov [1] introduced a new scheme
on a uniform mesh called the L2-1σ scheme for finding the numerical solution of the linear time-fractional
diffusion equation. The scheme attains O(τ2) convergence order, thereby making it independent of fractional
derivative order α. But in case of a weak singularity of the solution, both methods can attain only O(τα)
convergence order. Thus, similar to the L1 method, L2-1σ method is also explored for graded/general
non-uniform meshes in many works (see [7, 16, 17, 33] and references therein).

Description of the geometry of the domain and generating mesh are often challenging and time-consuming
in the FEM. To overcome this issue, Höllig et al. [12] proposed a new method known as the weighted extended
b-spline (web-spline) method, which is a mesh-free method since it does not require any mesh generation.
This method is developed within the framework of the standard FEM. It introduces a new finite element
subspace containing web-splines as the basis functions. In the following, we mention some advantages of the
web-spline method, which include [12, 13]:

• Method requires no mesh generation.
• Dirichlet boundary conditions are represented exactly.
• Accurate approximations can be achieved using relatively few parameters.
• An Arbitrary approximation order can be chosen.

Numerous studies in the existing literature explore the use of the spline based method to obtain numerical
solutions for classical elliptic [12] and parabolic [3, 11, 20, 23, 24, 29] PDEs. In [3], the authors studied
parabolic nonlocal initial boundary value problems, deriving web-spline based error estimates in L2(Ω) and
H1

0 (Ω) norms. In [24], the authors considered the heat equation with Dirichlet boundary conditions and
solved numerically using web-splines of degree m (m = 1, 2, 3). Additionally, the authors in [11] utilized
cubic trigonometric b-splines and non-polynomial spline methods to solve nonlinear coupled time-fractional
Schrödinger equations. In [23], the authors proposed a mesh-free method based on radial basis functions
to solve 2D fractional PDEs on irregular domains. Furthermore, the authors in [20] applied a linear b-
splines for spatial discretization and the Crank-Nicolson scheme for temporal discretization to solve the
delay reaction-diffusion equation.

Motivated by the above literature, we propose a scheme involving weighted b-spline with L1 and L2-1σ
methods on graded grids to solve the time-fractional nonlocal diffusion problem (1.1).

The main contributions of the proposed work are summarized as follows:
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Figure 1. Graph of b1, b2 and b3.

• We discuss the existence and uniqueness of the solution for the considered problem. Additionally,
we also derive the regularity results.

• A unified mesh-free scheme is proposed that is based on L1 and L2-1σ methods along with weighted
b-splines. Newton’s method is utilized to handle the nonlinearity in the scheme.

• We establish α-robust estimates for the fully-discrete solution in both L2(Ω) and H1
0 (Ω) norms.

• The theoretical estimates are validated through three numerical experiments conducted on different
domains.

To the best of our knowledge, this is the first attempt to numerically solve problem (1.1) using a weighted
b-spline based mesh-free method combined with L1 and L2-1σ schemes on a graded mesh.

The paper is organized as follows: Section 2 covers the construction of a finite element basis with a weighted
b-spline. Section 3 discusses the existence, uniqueness, and regularity of a weak solution at a continuous
level. Section 4 proposes the fully-discrete scheme for solving the time-fractional nonlocal Equation (1.1)
that uses L1 and L2-1σ methods on a graded mesh for time discretization, and weighted b-splines for spatial
discretization. We obtain α-robust a priori bounds and convergence results for the numerical solution of
the proposed scheme. Section 5 presents comparative numerical simulations of a mesh-free weighted b-spline
method with a standard FEM. Finally, we conclude the paper in Section 6.

2. Weighted b-Spline Basis

In this section, we outline the procedure for constructing weighted b-spline basis functions, as described in
[13, 14]. This process incorporates the concepts of weight functions and b-splines. We begin by defining the
b-splines. For a knot sequence 0, 1, . . . ,m+ 1, the recursion formula for standard uniform b-spline of degree
m is given below [13]:

bm(x) =
x

m
bm−1(x) +

m+ 1− x

m
bm−1(x− 1), (2.1)

where b0 is defined as the characteristic function in the interval [0, 1], i.e., b0(x) = χ[0,1](x). In Figure 1, we

have shown the graph of linear (b1), quadratic (b2) and cubic (b3) b-splines.

3



Unco
rre

cte
d Pro

of

The uniform b-spline bk in d dimension is constructed by taking the product of scale and the translate of
univariate b-splines [14]:

bk(x) =
d∏

i=1

bm
(xi
h

− ki

)
, k ∈ Zd, (2.2)

where h is grid width, k = (k1, k2, . . . , kd), x = (x1, x2, . . . , xd), and b
m is the standard univariate cardinal

b-spline of degree m. These b-spline bk, k ∈ Zd are nonnegative, Cm−1 smooth with support supp(bk) =
kh + [0,m + 1]dh. On each grid cell Ql = lh + [0, 1]dh, l ∈ Zd b-splines bk are polynomials of degree m in
each variable. Those b-splines that have some support in Ω are referred to as relevant b-splines otherwise,
they are considered irrelevant b-splines. We can define the spline space S spanned by all relevant b-splines
and write S = span{bk : k ∈ S}, where S is the relevant index set for domain Ω. For computations, it
is convenient to keep irrelevant indices as well, which means we can write the approximate solution in the
following form:∑

k∈S′

ukbk,

where S
′
the smallest rectangular array containing all relevant indices k, and the coefficients uk are set to

zero for k /∈ S. There are two primary reasons for b-splines space not to be used as a finite element space. The
first one is that b-splines, in general, do not conform to the essential boundary condition. Secondly, b-splines
do not provide a stable basis for finite element approximation Ω [12, 14]. Indeed, one way to resolve the
issue related to essential boundary condition is by multiplying a positive weight function w to the b-splines,
which vanishes on the boundary ∂Ω [12–14, 26]. To be more precise, a weight function w associated with a
part Γ of the boundary of the simulation domain Ω has bounded gradient, is positive in Ω, and vanishes on
Γ [14].

Weight functions can be determined analytically for particular domains, such as circles, squares, etc. For
complex domains, various methods are available for constructing the weight functions w (see [12, 13] for
more details). The stability issue was examined by K. Höllig et al. in [12] through the extension procedure.
In contrast, the authors in [14] demonstrated that accurate approximation is possible without incorporating
the extension procedure. Therein authors mentioned that the preconditioning techniques are adequate for
effectively solving the ill-conditioned Galerkin matrix system with acceptable precision. In the following,
now we introduce the weighted b-spline space [14]:

Bh = span{wbk : k ∈ S}.

3. Well-posedness and Regularity of the Solution

Definition 3.1. The weak solution u of the problem (1.1) is such that u(·, t) ∈ H1
0 (Ω) ∀ t ∈ (0, T ] and the

following equation holds for a.e. t ∈ (0, T ]

(c0D
α
t u, ψ) + M

(∫
Ω

u dx

)
(∇u,∇ψ) =

(
f, ψ

)
, (3.1)(

u(·, 0), ψ
)
=
(
u0(·), ψ

)
∀ ψ ∈ H1

0 (Ω). (3.2)

The following assumptions have been made on the problem data, similar to [4], to ensure the existence and
uniqueness of a weak solution:
H1: u0 ∈ H1

0 (Ω) ∩H2(Ω), f ∈ L∞(0, T ;L2(Ω)).
H2: M : R −→ R+ is such that

∞ > m2 ≥M(s) ≥ m1 > 0, ∀s ∈ R. (3.3)

H3: M is a Lipschitz continuous function, i.e., |M(u1)−M(u2)| ≤ LM |u1−u2| for all u1, u2 ∈ R, where LM

is a positive constant. It can be shown that under assumptions H1-H3, the considered problem (3.1) has a
unique weak solution that satisfies ∥u∥L∞(0,T ;L2(Ω)) ≤ C [22]. In this work, we take C as a generic constant
that may depend on various parameters but is always independent of spatial and temporal step sizes.
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We now mention some notations that are required to discuss the regularity of the solution for the time-
fractional nonlocal diffusion equation (see Chapter 3 of [31]). For µ ≥ 0, we denote Ḣµ as a subspace of
L2(Ω) such that

Ḣµ(Ω) = {v ∈ L2(Ω) :
∞∑
k=1

Λµ
k |(v, Ψk)|2 <∞}. (3.4)

The norm in Ḣµ(Ω) is given by

|v|2µ =
∞∑
k=1

Λµ
k |(v, Ψk)|2, (3.5)

where (·, ·) denote the L2(Ω) inner product. Here, {Λk}∞k=1 and {Ψk}∞k=1 denote eigenvalues and orthonormal
eigenfunctions respectively of the eigen value problem −∆Ψ = ΛΨ in Ω with Ψ = 0 on ∂Ω. Note that
eigenfunctions {Ψk}∞k=1 forms an orthonrmal basis of L2(Ω) and eigenvalues are positive such that 0 < Λ1 ≤
Λ2 ≤ · · · ≤ Λk ≤ . . . and each of which has finite multiplicity.
In particular, if µ = 0, |v|0 = ∥v∥ = (v, v)1/2 is the L2(Ω) norm and if µ = 1, |v|1 = ∥∇v∥ is the H1

0 (Ω)

norm. Furthermore, if µ = 2, |v|2 = ∥∆v∥ is the equivalent norm in H2(Ω)∩H1
0 (Ω). Thus Ḣ0(Ω) = L2(Ω),

Ḣ1(Ω) = H1
0 (Ω), and Ḣ2(Ω) = H2(Ω) ∩H1

0 (Ω). For general µ ∈ N ∪ {0}, the space

Ḣµ(Ω) =
{
v ∈ Hµ; ∆kv = 0 on ∂Ω, for each non-negative integer k <

µ

2

}
. (3.6)

Moreover, both norms |v|µ = ∥ · ∥Ḣµ(Ω) and ∥ · ∥Hµ(Ω) are equivalent in Ḣµ(Ω).

Theorem 3.2. If u0 ∈ Ḣ2(Ω) and f ∈ L∞(0, T ; Ḣ2(Ω)), then the solution u of problem (1.1) satisfies the
following regularity estimates for all t ∈ [0, T ] and all t1, t2 ∈ [0, T ]:

∥u(t)∥H2(Ω) ≤ C, ∥c0Dα
t u(t)∥ ≤ C, and ∥u(t2)− u(t1)∥ ≤ C|t2 − t1|α.

Proof. Consider the weak formulation (3.1) as

(c0D
α
t u, ψ) + M

(∫
Ω

u dx

)
(−∆u,ψ) =

(
f(·, t), ψ

)
, ∀ψ ∈ V, a.e. t ∈ [0, T ], (3.7)

u(x, 0) = u0. (3.8)

With the help of an orthonormal basis {Ψk}∞k=1, the solution u of the problem can be expressed as a Fourier
series expansion by

u(x, t) =
∞∑
k=1

γk(t)Ψk(x). (3.9)

Further, by employing this expansion (3.9) in (3.7) along with ψ = Ψk, one has

c
0D

α
t γk(t) = −ΛkM

(∫
Ω

u dx

)
γk(t) +

(
f(·, t), Ψk

)
γk(0) = (u0, Ψk), ∀ k = 1, 2, . . . .

We obtain the following integral equation with a weakly singular kernel while applying the fractional-integral
operator of order α on both sides

γk(t) = γk(0)−
Λk

Γ (α)

∫ t

0

(t− s)α−1M

(∫
Ω

u(x, s) dx

)
γk(s)ds

+
1

Γ (α)

∫ t

0

(t− s)α−1(f(·, s), Ψk)ds.

Utilizing ∥u∥L∞(0,T ;L2(Ω)) ≤ C and H2 to get

|γk(t)| ≤ |γk(0)|+
Λkm2

Γ (α)

∫ t

0

(t− s)α−1|γk(s)|ds+
Tα

Γ (1 + α)

∣∣∣∣∣
(

sup
s∈[0,T ]

f(·, s), Ψk

)∣∣∣∣∣ , ∀ k = 1, 2, . . . .
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The Gronwall inequality [32] gives

|γk(t)| ≤ C

(
|γk(0)|+

Tα

Γ (1 + α)

∣∣∣∣∣
(

sup
s∈[0,T ]

f(·, s), Ψk

)∣∣∣∣∣
)
Eα(Λkm2t

α) (3.10)

≤ C

(
|(u0, Ψk)|+

∣∣∣∣∣
(

sup
s∈[0,T ]

f(·, s), Ψk

)∣∣∣∣∣
)
. (3.11)

Now, for µ = 0, 1, and 2 the Equation (3.5) gives

|u|2µ =
∞∑
k=1

Λµ
k |(u, Ψk)|2 =

∞∑
k=1

Λµ
k |γk(t)|

2.

Using (3.10), we get

|u|2µ ≤ C

[ ∞∑
k=1

Λµ
k |(u0, Ψk)|2 +

∞∑
k=1

Λµ
k

∣∣( sup
s∈[0,T ]

f(·, s), Ψk

)∣∣2]. (3.12)

The definition of norm given in (3.5) and

∣∣∣∣ sup
s∈[0,T ]

f(·, s)
∣∣∣∣2 ≤ sup

s∈[0,T ]

(|f(·, s)|2) provide

|u|2µ ≤ C
(
|u0|2µ + ∥f∥2

L∞(0,T ;Ḣµ(Ω))

)
∀ t ∈ [0, T ].

By combining the results for µ = 0, 1, and 2, we get

∥u(t)∥H2(Ω) ≤ C
(
∥u0∥H2(Ω) + ∥f∥L∞(0,T ;H2(Ω))

)
, ∀ t ∈ [0, T ]. (3.13)

Next, to derive the second result of the theorem, we consider the given equation as

c
0D

α
t u =M

(∫
Ω

u dx

)
∆u+ f(x, t)

From above equation, we can get the following estimate

∥c0Dα
t u(t)∥ ≤m2∥∆u(t)∥+ ∥f∥L∞(0,T ;L2(Ω)). (3.14)

Equations (3.14) and (3.13) together yield the desired result for c
0D

α
t u.

Next, we notice that the solution u of the considered problem (1.1) satisfies the following integral equation

u(t) = u0 +
1

Γ (α)

∫ t

0

(t− s)α−1M

(∫
Ω

u(x, s) dx

)
∆u(s)ds+

1

Γ (α)

∫ t

0

(t− s)α−1f(s)ds. (3.15)

Now, let t1 < t2 (without loss of generality), and then from (3.15) we get

u(t2)− u(t1) =
1

Γ (α)

∫ t2

0

(t2 − s)α−1M

(∫
Ω

u(x, s) dx

)
∆u(s)ds

+
1

Γ (α)

∫ t2

0

(t2 − s)α−1f(s)ds

− 1

Γ (α)

∫ t1

0

(t1 − s)α−1M

(∫
Ω

u(x, s) dx

)
∆u(s)ds

− 1

Γ (α)

∫ t1

0

(t1 − s)α−1f(s)ds. (3.16)

The Equation (3.16) produces

u(t2)− u(t1) =
1

Γ (α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
M

(∫
Ω

u(x, s) dx

)
∆u(s)ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)α−1M

(∫
Ω

u(x, s) dx

)
∆u(s)ds

6
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+
1

Γ (α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
f(s)ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)α−1f(s)ds. (3.17)

Hence, from (3.17), we have

∥u(t2)− u(t1)∥ ≤ C

[ ∫ t1

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣ds+ ∫ t2

t1

(t2 − s)α−1ds

]
. (3.18)

Notice that (t2 − s)α−1 − (t2 − s)α−1 is negative. Thus, use this fact in (3.18) to achieve

∥u(t2)− u(t1)∥ ≤C
[ ∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)
ds+

∫ t2

t1

(t2 − s)α−1ds

]
=C
[
(t2 − t1)

α + tα1 − tα2 + (t2 − t1)
α
]
.

Since tα1 − tα2 < 0, therefore

∥u(t2)− u(t1)∥ ≤ C|t2 − t1|α ∀ t1, t2 ∈ [0, T ].

This complete the proof. □

Remark 3.3. The above theorem proves that the solution u of time-fractional nonlocal diffusion equation
satisfies u ∈ L∞(0, T ;H2(Ω)) ∩Cα(0, T ;L2(Ω)) and c

0D
α
t u ∈ L∞(0, T ;L2(Ω)) under the regularity assump-

tions u0 ∈ Ḣ2(Ω) and f ∈ L∞(0, T ;Ḣ2(Ω)) on problem data. Similar argument follows to prove that for any

µ ∈ N ∪ {0}, if u0 ∈ Ḣµ+2(Ω)) and f ∈ L∞(0, T ; Ḣµ+2(Ω)), then u ∈ L∞(0, T ; Ḣµ+2(Ω)) ∩ Cα(0, T ; Ḣµ)

and c
0D

α
t u ∈ L∞(0, T ; Ḣµ). It is important to note that the boundary condition given in the definition

of Ḣµ(Ω) (in Equation (3.6)) is restrictive as it can be seen from the example of a smooth function

v = (1 − x)(1 − y)xy defined on Ω = (0, 1) × (0, 1). Here, v ∈ Ḣ2(Ω) but does not belong Ḣ3(Ω) be-
cause its Laplacian ∆v = −2(1 − x)x − 2(1 − y)y does not vanish on the boundary of the domain Ω. The
assumption of more regularity on data can lead to severe restrictions on the considered problem. Note
that this work proves Cα[0, T ] regularity for the time variable and general regularity results require further
attention from academicians.

4. A Unified Fully-Discrete Scheme

For the fully-discrete formulation, we consider a partition of [0, T ] given by 0 = t0 < t1 < · · · < tN = T ,

where tn = T
(
n
N

)r
for n = 0, 1, . . . , N . Here, r ≥ 1 is the grading parameter, and N ∈ N. Let σ ∈ [0, 1] be

a constant, and define tn−σ as tn−σ := σtn−1 + (1 − σ)tn. Now, we denote the exact solution of the given
problem (1.1) by un and the corresponding fully-discrete solution by Un

h at t = tn. Next, the approximation
of the Caputo fractional derivative in a unified manner can be given by the following general formula:

c
0D

α
tn−σ

ρ ≈Dα
Nρ

n−σ

:=
n∑

j=1

Bn
σ,n−j(ρ

j − ρj−1) for 1 ≤ n ≤ N. (4.1)

For different choices of σ and Bn
σ,n−j , the general formula (4.1) will reduce to the following approximations.

L1 approximation [30]: For σ = 0, the discrete coefficient Bn
σ,n−j in (4.1) is given by

Bn
σ,n−j =

1

Γ (1− α)

∫ tj

tj−1

(tn − η)−α

τj
dη for n ≥ 1 and 1 ≤ j ≤ n,

where τj = tj − tj−1.
L2-1σ approximation [16]: The values of discrete coefficients Bn

σ,n−j in (4.1) are given below:

for n = 1, B1
σ,0 = a1,0

7
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and

for n ≥ 2, Bn
σ,n−j =


an,0 +

τn−1

τn
bn,1, if j = n,

an,n−j +
τj−1

τj
bn,n−j+1 − bn,n−j , if 2 ≤ j ≤ n− 1,

an,n−1 − bn,n−1, if j = 1,

where

an,0 =
τ−1
n

Γ (1− α)

∫ tn−σ

tn−1

(tn−σ − η)−αdη,

an,n−j =
τ−1
j

Γ (1− α)

∫ tj

tj−1

(tn−σ − η)−αdη for 1 ≤ j ≤ n− 1,

bn,n−j =
2τ−1

j

Γ (1− α)(tj+1 − tj−1)

∫ tj

tj−1

(tn−σ − η)−α(η − tj− 1
2
)dη for 1 ≤ j ≤ n− 1.

Now, the fully-discrete scheme seeks the solution Un
h ∈ Bh such that for each n = 1, 2, . . . , N, one has

(Dα
NU

n−σ
h , ψh) +M

(∫
Ω

Un,σ
h dx

)
(∇Un,σ

h ,∇ψh) = (fn−σ, ψh) ∀ ψh ∈ Bh (4.2)

and

U0
h = u0h for n = 0, (4.3)

where Un,σ
h = (1 − σ)Un

h + σUn−1
h and u0h is some approximation of u0. Let {ϕi : 1 ≤ i ≤ Nd} be the basis

of finite dimensional space Bh, then the solution Un
h ∈ Bh of the scheme (4.2) can be written in a linear

combination of basis functions with αn
i ∈ R as Un

h =
Nd∑
i=1

αn
i ϕi. Further, if we substitute this into the equation

(4.2) and utilize Newton’s method to solve the resulting nonlinear system of equations, we encounter a dense
Jacobian matrix [4]. To address this concern, we adopt the approach proposed in the references [4, 10]. Now,
we modify problem (4.2) such that, for d ∈ R and Un

h ∈ Bh the following holds:∫
Ω

Un,σ
h dx− d = 0, (4.4)

(Dα
NU

n−σ
h , ψh) +M (d) (∇Un,σ

h ,∇ψh) = (fn−σ, ψh) ∀ ψh ∈ Bh. (4.5)

Note that problem (4.4)-(4.5) and problem (4.2) are equivalent [4] in the sense that the solution of one will
be the solution of another. Next we choose ψh = ϕj and rewrite the Equations (4.4)-(4.5) as

Fj(U
n
h , d) = (Dα

NU
n−σ
h , ϕj) +M (d) (∇Un,σ

h ,∇ϕj)− (fn−σ, ϕj) for 1 ≤ j ≤ Nd, (4.6)

FNd+1 =

∫
Ω

Un,σ
h dx− d. (4.7)

An application of Newton’s method in (4.6)-(4.7) gives rise to the following matrix equation [5].

J

[
ᾱn

β

]
=

[
A b
c δ11

] [
ᾱn

β

]
=

[
F̄

FNd+1

]
,

where J is the sparse Jacobian matrix, ᾱn = [αn
1 , α

n
2 , . . . , α

n
Nd

]
′
, F̄ = [F1, F2, . . . , FNd

]
′
and entries A, b and

c are given below:

Ajl =Bn
σ,0(ϕl, ϕj) + (1− σ)M(d)(∇ϕl,∇ϕj), for 1 ≤ l, j ≤ Nd, (4.8)

bj1 =M ′(d) (∇Un,σ
h , ∇ϕj) for 1 ≤ j ≤ Nd, (4.9)

c1l =(1− σ)

∫
Ω

ϕl dx for 1 ≤ l ≤ Nd, (4.10)

δ11 =− 1. (4.11)
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Now, in our further numerical analysis of the proposed scheme, we require some more results and notations.

Lemma 4.1. [1] Let the function vk = v(·, tk) ∈ L2(Ω) for k = 0, 1, 2, . . . , N . Then it satisfies:(
Dα

Nv
n−σ, vn,σ

)
≥ 1

2
Dα

N∥vn−σ∥2 for n = 1, 2, . . . , N. (4.12)

Next, we define the discrete Laplacian operator ∆h : Bh → Bh such that the following holds [31]:

(−∆hū, v) := (∇ū,∇v) ∀ ū, v ∈ Bh (4.13)

Further, for n = 1, 2, . . . , N , the discrete coefficients Q
(n)
n−i are defined as follows:

Q
(n)
n−i :=


1

Bi
σ,0

∑n
k=i+1

(
Bk
σ,k−i−1 − Bk

σ,k−i

)
Q

(n)
n−k, if 1 ≤ i ≤ n− 1,

1
Bn

σ,0
, if i = n.

Lemma 4.2. [6] If the constant γ ∈ (0, 1), then one has
n∑

j=1

Q
(n)
n−jj

r(γ−α) ≤ πAΓ (1 + γ − α)

Γ (1 + γ)
Tα

(
tn
T

)γ

Nr(γ−α), for n = 1, 2, . . . , N,

where πA = 11
4 for σ = α

2 and πA = 1 for σ = 0.

Next, we state the discrete fractional Gronwall inequality that provides α-robust estimates for the fully-
discrete solution Un

h .

Lemma 4.3. [16] Let 0 ≤ γ ≤ 1, λl ≥ 0, and Λ be constants such that
∑n

l=0 λl ≤ Λ for n ≥ 1. Suppose
the nonnegative sequences {ζn}, {ηn} are bounded, and the grid function {ωn ≥ 0, for n ≥ 0} satisfy the
inequality for n = 1, 2, . . . , N,

Dα
N

[
(ωn−γ)2

]
≤

n∑
k=1

λn−k

(
ωk,θ1

)2
+ ζnωk,θ2 + (ηn)2

where ωk,θi := θiω
k−1 + (1− θi)ω

k for θi ∈ [0, 1] and i,= 1, 2.
Then

ωn ≤ 2Eα (2πAΛ t
α
n)

ω0 + max
1≤k≤n

k∑
j=1

Q
(k)
k−j(ζ

j + ηj) + max
1≤k≤n

{ηk}

 ,
provided that the maximum time-step τN ≤ 1

α
√

2πA Γ (2−α)Λ
.

Here, Eα(z) :=
∑∞

k=0
zk

Γ (1+kα) is the Mittag-Leffler function, and πA = 11
4 for σ = α

2 , while πA = 1 for

σ = 0.

Theorem 4.4. If Un
h is the solution of the problem (4.2) then for each n = 1, 2, . . . , N, Un

h satisfy following
estimates:

max
1≤n≤N

∥Un
h ∥ ≤ C

(
1 + ∥U0

h∥
)
, (4.14a)

max
1≤n≤N

∥∇Un
h ∥ ≤ C

(
1 + ∥∇U0

h∥
)
. (4.14b)

Proof. Taking ψh = Un,σ
h in (4.2), we get(

Dα
NU

n−σ
h , Un,σ

h

)
+ M

(∫
Ω

Un,σ
h dx

)
(∇Un,σ

h ,∇Un,σ
h ) = (fn−σ, Un,σ

h ). (4.15)

By using Lemma 4.1, assumption H2, Young’s and Cauchy-Schwarz inequalities in (4.15), we get

1

2
Dα

N∥Un−σ
h ∥2 ≤ 1

2
∥fn−σ∥2 + 1

2
∥Un,σ

h ∥2. (4.16)

9
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Now, we can use Lemma 4.3 and Lemma 4.2 (with γ = α) in (4.16) to get the first desired result. Similarly,
by taking the test function ψh = −∆hU

n,σ
h in (4.2), we can prove the bound (4.14b). □

We now state some regularity assumptions on the solution u, along with some notations and results from
[17] that are required to obtain error estimates for the fully-discrete solution Un

h :

∥c0Dα
t u∥L∞(0,T ;H1

0 (Ω)∩Hm+2(Ω)) ≤ C, ∥u∥L∞(0,T ;H1
0 (Ω)∩Hm+2(Ω)) ≤ C, and (4.17)

∥∂pt u(·, t)∥H2(Ω) ≤ C(1 + tα−p) for 0 < t ≤ T, where p = 0, 1, 2, 3. (4.18)

The L2-projection Ph : L2(Ω) → Bh is defined as follows:

(u, vh) =(Phu, vh) ∀ u ∈ L2(Ω) and vh ∈ Bh. (4.19)

Moreover, the H1 stability result holds for the projection Ph, i.e.,

∥∇Phu∥ ≤ C∥∇u∥ ∀ u ∈ H1
0 (Ω). (4.20)

Further, the Ritz-projection Rh : H1
0 (Ω) → Bh as follows:

(∇ū,∇vh) =(∇Rhū,∇vh) ∀ ū ∈ H1
0 (Ω) and vh ∈ Bh. (4.21)

Lemma 4.5. [16] Let ω ∈ C[0, T ]∩C3(0, T ]. Assume ∥∂pt ω(t)∥2 ≤ C(1 + tα−p) for p = 0, 1, 2, 3 and
0 < t ≤ T. Then following inequality holds:

∥c0Dα
tn−σ

ω −Dα
N ωn−σ∥H1(Ω) ≤

{
Ct−α

n−σ N
−min{3−α, rα}, if σ = α

2 ,

Ct−α
n N−min{2−α, rα}, if σ = 0.

Lemma 4.6. [16] Let ω ∈ C2(0, T ]. For p = 0, 1, 2 and 0 < t ≤ T , let ∥∂pt ω(t)∥2 ≤ C (1 + tα−p). Then, we
have

∥ωn,σ − ωn−σ∥H2(Ω) ≤

{
CN−min{rα, 2}, if σ = α

2 ,

0, if σ = 0.

The Ritz projection Rh satisfies the following estimate in more general spaces.

Theorem 4.7. [3, 31] For l = 0, 1 and l < k ≤ m+ 1, there exists constant C such that

||χ(t)||Hl(Ω) ≤ Chk−l||u(t)||Hk(Ω) ∀ u(t) ∈ Hk(Ω) ∩H1
0 (Ω),

where χ(t) = u(t)−Rhu(t).

In the following theorem, we establish convergence results of the fully-discrete solution. For this purpose,
we rewrite the error u(tn)− Un

h using the Ritz projection Rh as

u(tn)− Un
h =(u(tn)−Rhu(tn)) + (Rhu(tn)− Un

h ) (4.22)

=χn + ηn. (4.23)

4.1. Weighted b-splines Based Error Estimates.

Theorem 4.8. Let un be the exact solution and Un
h be the approximate solution of problems (1.1) and (4.2)

respectively, then the following estimates hold for 1 ≤ n ≤ N

max
1≤n≤N

∥un − Un
h ∥ ≤

{
C
(
hm+1 +N−min{2, rα}), if σ = α

2 ,

C
(
hm+1 +N−min{2−α, rα}), if σ = 0,

(4.24a)

max
1≤n≤N

∥∇un −∇Un
h ∥ ≤

{
C
(
hm +N−min{2, rα}), if σ = α

2 ,

C
(
hm +N−min{2−α, rα}), if σ = 0.

(4.24b)
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Proof. For any ψh ∈ Bh, the estimate for ηn is given by(
Dα

Nη
n−σ, ψh

)
+ M

(∫
Ω

Un,σ
h dx

)
(∇ηn,σ,∇ψh) =

(
Dα

NRhu
n−σ, ψh

)
+M

(∫
Ω

Un,σ
h dx

)
(∇Rhu

n,σ,∇ψh)

−
(
Dα

NU
n−σ
h , ψh

)
−M

(∫
Ω

Un,σ
h dx

)
(∇Un,σ

h ,∇ψh)

=
(
Dα

NRhu
n−σ −c

0 D
α
tn−σ

u, ψh

)
(4.25)

−M

(∫
Ω

un−σdx

)
(∆un,σ −∆un−σ, ψh)

−
(
M

(∫
Ω

Un,σ
h dx

)
−M

(∫
Ω

un−σ dx

))
(∆un,σ, ψh).

Choosing ψh = ηn,σ in (4.25) then use Cauchy-Schwarz inequality, triangle inequality, Lemma 4.1 and
assumption H2 to get

1

2
Dα

N∥ηn−σ∥2 + m1 ∥∇ηn,σ∥2 ≤
(
∥Dα

NRhu
n−σ − c

0D
α
tn−σ

Rhu∥ + ∥c0Dα
tn−σ

Rhu− c
0D

α
tn−σ

u∥+m2∥∆un,σ −∆un−σ∥

+

∣∣∣∣M(∫
Ω

Un,σ
h dx

)
−M

(∫
Ω

un−σ dx

)∣∣∣∣∥∆un,σ∥
)
∥ηn,σ∥. (4.26)

From (4.17), Theorem 4.7, Lipschitz continuity of function M , and triangle inequality, we get

Dα
N∥ηn−σ∥2 ≤ C

[
∥ηn,σ∥2 +

(
∥Dα

NRhu
n−σ − c

0D
α
tn−σ

Rhu∥ + ∥∆un,σ −∆un−σ∥
+ hm+1 + ∥un,σ − un−σ∥

)
∥ηn,σ∥

]
. (4.27)

By using Poincaré inequality, we get

Dα
N∥ηn−σ∥2 ≤ C

[
∥ηn,σ∥2 +

(
∥∇(Dα

NRhu
n−σ − c

0D
α
tn−σ

Rhu)∥ + ∥∆un,σ −∆un−σ∥
+ hm+1 + ∥un,σ − un−σ∥

)
∥ηn,σ∥

]
. (4.28)

Now, we use Lemma 4.3 in (4.28), we get

∥ηn∥ ≤ 2CEα

(
2ΛπA t

α
n

)[
∥η0∥+ max

1≤k≤n

k∑
j=1

Q
(k)
k−j

(
∥∇(Dα

Nu
j−σ − c

0D
α
tj−σ

u)∥

+ ∥∆uj,σ −∆uj−σ∥+ hm+1 + ∥uj,σ − uj−σ∥
)]
. (4.29)

From Lemma 4.6 and Lemma 4.5, we get

∥∇(Dα
Nu

j−σ − c
0D

α
tj−σ

u)∥+ ∥∆uj,σ −∆uj−σ∥+ ∥uj,σ − uj−σ∥

≤

{
Ct−α

j−σ

(
N−min{3−α, rα} +N−min{2, rα}), if σ = α

2 ,

Ct−α
j N−min{2−α, rα}, if σ = 0.

(4.30)

If lN = 1
lnN then we get following inequalities

t−α
j−σ ≤

{
(j/2)−rαNrα ≤ (2N)rαjr(lN−α), if σ = α

2 ,

j−rαNrα ≤ Nrαjr(lN−α), if σ = 0.
(4.31)

Setting γ = lN in Lemma 4.2 then we get

k∑
j=1

Q
(k)
k−j j

r(lN−α) ≤ πA Γ (1 + lN − α)

Γ (1 + lN )
Tα Nr(lN−α). (4.32)
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Now, we use (4.32), (4.31), and (4.30) in (4.29), and then we get

∥ηn∥ ≤



C

[
∥η0∥+ (2N)rα

(
11Γ (1+lN−α)

4Γ (1+lN ) Tα Nr(lN−α)(N−min{3−α, rα}

+N−min{2, rα}))+ max
1≤k≤n

k∑
j=1

Q
(k)
k−jh

m+1

]
if σ = α

2 ,

C

[
∥η0∥+Nrα

(
Γ (1+lN−α)
Γ (1+lN ) Tα Nr(lN−α)N−min{2−α, rα}

)
+ max

1≤k≤n

k∑
j=1

Q
(k)
k−jh

m+1

]
if σ = 0.

(4.33)

Taking γ = α in Lemma 4.2 then we get

k∑
j=1

Q
(k)
k−j ≤ πA

Γ (1 + α)
Tα. (4.34)

If we choose U0
h = Rhu

0 then ∥η0∥ = 0, and using (4.34) in (4.33), we get

∥ηn∥ ≤



C

[
(2N)rα

(
11Γ (1+lN−α)

4Γ (1+lN ) Tα Nr(lN−α)(N−min{3−α, rα}

+N−min{2, rα}))+ 11
4Γ (1+α)T

αhm+1

]
, if σ = α

2 ,

C

[
Nrα

(
Γ (1+lN−α)
Γ (1+lN ) Tα Nr(lN−α)N−min{2−α, rα}

)
+ 1

Γ (1+α)T
αhm+1

]
, if σ = 0.

(4.35)

Now, we can utilize Theorem 4.7 and the triangle inequality to get the first desired result (4.24b).
From equation (4.13), we can rewrite equation (4.25) as follows:(
Dα

Nη
n−σ, ψh

)
−M

(∫
Ω

Un,σ
h dx

)
(∆hη

n,σ, ψh) =
(
Dα

NRhu
n−σ −c

0 D
α
tn−σ

u, ψh

)
−M

(∫
Ω

un−σ dx

)
(∆un,σ −∆un−σ, ψh) (4.36)

−
(
M

(∫
Ω

Un,σ
h dx

)
−M

(∫
Ω

un−σ dx

))
(∆un,σ, ψh).

Choosing ψh = −∆hη
n,σ in (4.36) then use Cauchy-Schwarz inequality, triangle inequality, Lemma 4.1 and

assumption H2 together with (4.19) and (4.20) to get

1

2
Dα

N∥∇ηn−σ∥2 +m1 ∥∆hη
n,σ∥2 ≤ ∥∇(Dα

NRhu
n−σ − c

0D
α
tn−σ

Rhu)∥∥∇ηn,σ∥

+ ∥∇(c0D
α
tn−σ

Rhu− Ph(
c
0D

α
tn−σ

u))∥∥∇ηn,σ∥
+m2∥∇Ph(∆u

n,σ −∆un−σ)∥∥∇ηn,σ∥

+

∣∣∣∣M(∫
Ω

Un,σ
h dx

)
−M

(∫
Ω

un−σ dx

)∣∣∣∣∥∇Ph(∆u
n,σ)∥∥∇ηn,σ∥

≤ C

((
∥∇(Dα

NRhu
n−σ − c

0D
α
tn−σ

Rhu)∥ + ∥∇(c0D
α
tn−σ

Rhu− c
0D

α
tn−σ

u)∥

+m2∥∇(∆un,σ −∆un−σ)∥
)
∥∇ηn,σ∥
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+

∣∣∣∣M(∫
Ω

Un,σ
h dx

)
−M

(∫
Ω

un−σ dx

)∣∣∣∣∥∇(∆un,σ)∥∥∇ηn,σ∥
)
. (4.37)

From (4.17), Theorem 4.7, Lipschitz continuity of function M , Poincaré inequality and triangle inequality,
we get

Dα
N∥∇ηn−σ∥2 ≤ C

(
∥∇ηn,σ∥2 +

(
∥∇(Dα

NRhu
n−σ − c

0D
α
tn−σ

Rhu)∥
+ ∥∇(∆un,σ −∆un−σ)∥hm + ∥∇(un,σ − un−σ)∥

)
∥∇ηn,σ∥

)
. (4.38)

Now, we use Lemma 4.3 in (4.38) and follow a similar argument as above, one can get the error estimate in
H1

0 -norm. This completes the proof. □

5. Numerical Experiments

In this numerical experiments section, we conduct three numerical experiments on different domains. All
simulations are performed with MATLAB R2024a on a computer system having Intel Xeon processor running
at 3.90 GHz, 256 GB of RAM. To solve all examples using the scheme (4.2), we set T = 0.5. For the L1
scheme, we choose r = 2−α

2 , and for the L2-1σ scheme, we set r = 3−α
3 to achieve the desired convergence

rate. For Newton’s iterations, we select the initial guess ug as the solution to the Poisson equation under
the homogeneous Dirichlet boundary condition and set the tolerance to 10−15. To get errors and rate of
convergence in the spatial direction, we run the test for α = 0.5 while α = 0.4, 0.6, and 0.8 are used to
calculate temporal errors and convergence rates. We compute relative spatial errors E1 and E2 at the final

time level through E1 =
∥uN−UN

h ∥
∥uN∥ and E2 =

∥∇uN−∇UN
h ∥

∥∇uN∥ . Furthermore, the maximum relative temporal

error E3 is calculated using E3 =
max

1≤n≤N
∥un − Un

h ∥

max
1≤n≤N

∥un∥ .

We have achieved the theoretical convergence ordersO
(
hm+1 +N−min{2−α, rα}) andO(hm+1+N−min{2, rα})

of the fully-discrete scheme (4.2) for L1 and L2-1σ methods, respectively in the L2(Ω) norm. Similarly, the
established convergence orders in the H1

0 (Ω) norm are O
(
hm +N−min{2−α, rα}) and O(hm +N−min{2, rα})

for the L1 and L2-1σ methods, respectively. We therefore calculate L2(Ω) relative errors (E1), H
1
0 (Ω) rel-

ative errors (E2) by using the relations N =

⌊
1

h
m+1
2−α

⌋
,
⌊

1

h
m

2−α

⌋
(for L1 scheme) and N =

⌊
1

h
m+1

2

⌋
,
⌊

1

h
m
2

⌋
(for L2-1σ scheme). Further, we set h−1 =

⌊
N

2−α
m+1

⌋
(h−1 is a number of cells per coordinate direction) for

L1 method based scheme and h−1 =
⌊
N

2
m+1

⌋
for the L2-1σ method based scheme to compute maximum

relative errors (E3) for various α-values.

Example 5.1. Consider the time-fractional nonlocal diffusion Equation (1.1) with the nonlocal termM
( ∫

Ω
u

dx
)
= 3+

∫
Ω
u dx on unit square Ω. The weight function associated with this domain is given by w = (1−

x)(1−y)xy. The source function f is chosen in such a manner that the exact solution is u = (t3+tα) cos(πx)w.
We solve the considered example using fully-discrete scheme (4.2) for various α-values. For comparison, we
also solve Example 5.1 using L1 and L2-1σ methods with the standard FEM. Tables 1 and 2 provide results of
a comparison between these two methods. The weighted b-spline method exhibits better accuracy compared
to the standard FEM, as evidenced by the errors and rates of convergence presented in Tables 1 and 2
corresponding to different degrees of freedom (DOF).

Furthermore, the numerical outcomes obtained using the proposed L1 and L2-1σ methods under scheme
(4.2) are presented in Tables 3–5. In Table 3, we report maximum relative errors (E3) and corresponding
convergence rates. Tables 4 and 5 show L2(Ω) relative errors (E1) and H

1
0 (Ω) relative errors (E2), respec-

tively with corresponding rates of convergence for weighted b-splines of degree m = 1, 2, 3. Finally, we
display the plot of the approximate solution and its domain Ω in Figure 2.

Example 5.2. Consider the time-fractional nonlocal diffusion equation (1.1) with the nonlocal term

M
( ∫

Ω

u dx
)
= 3 +

∫
Ω

u dx,
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Table 1. Relative errors and rates (dominated by spatial error) for the L1 scheme for the
Example 5.1.

Error DOF Weighted
b-spline method

error

Rate Standard FEM
error

Rate

E1 81 0.8760E-2 0.1444E-0
289 0.2262E-2 1.9533 0.3288E-1 2.1349
1089 0.5694E-3 1.9899 0.7773E-2 2.0808
4225 0.1425E-3 1.9980 0.1886E-2 2.0430

E2 81 0.2823E-1 1.8479E-0
289 0.1399E-1 1.0127 0.8549E-0 1.1119
1089 0.6942E-2 1.0109 0.4129E-0 1.0497
4225 0.3461E-2 1.0040 0.2031E-0 1.0236

Table 2. Relative errors and rates (dominated by spatial error) for the L2-1σ scheme for
the Example 5.1.

Error DOF Weighted
b-spline method

error

Rate Standard FEM
error

Rate

E1 81 0.1804E-1 0.1057E-0
289 0.5937E-2 1.6033 0.2787E-1 1.9231
1089 0.1670E-2 1.8295 0.7104E-2 1.9720
4225 0.4399E-3 1.9250 0.1789E-2 1.9892

E2 81 0.4389E-1 0.2091E-0
289 0.2186E-1 1.0055 0.1040E-0 1.0068
1089 0.1080E-2 1.0171 0.5195E-1 1.0023
4225 0.5374E-2 1.0070 0.2596E-1 1.0006

Figure 2. Plot of the numerical solution and its domain at T = 0.5 and α = 0.5 for
Example 5.1.
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on shovel type domain Ω. The weight function associated with this domain is given by w = 1−X2 −
(

Y
2 +

X2 − 1

)2

for X = 2x− 1 and Y = 5y − 1. The source function f is chosen in such a manner that the exact

Table 3. Maximum relative errors (E3) and rates (dominated by temporal error) for Ex-
ample 5.1.

N L1 scheme Rate N L2-1σ scheme Rate

α = 0.4 16 0.7371E-2 16 0.6604E-2
81 0.5665E-3 1.5820 32 0.2007E-2 1.7176
256 0.8752E-4 1.6230 64 0.5485E-3 1.8719
625 0.2086E-4 1.6061 128 0.1429E-3 1.9403

α = 0.6 16 0.1469E-1 16 0.5395E-1
81 0.1310E-2 1.4902 32 0.1446E-2 1.7464
256 0.2517E-3 1.4334 64 0.1310E-2 1.8989
625 0.7165E-4 1.4079 128 0.9440E-4 1.9571

α = 0.8 16 0.2049E-1 16 0.4473E-2
81 0.3032E-2 1.1782 32 0.1144E-2 1.9671
256 0.7659E-3 1.1956 64 0.2884E-3 1.9878
625 0.2626E-3 1.1989 128 0.7236E-4 1.9950

Table 4. Relative errors (E1) and rates (dominated by spatial error) for Example 5.1.

Degree DOF L1 Scheme Rate L2-1σ scheme Rate

m = 1 81 0.8760E-2 0.1804E-1
289 0.2262E-2 1.9533 0.5937E-2 1.6033
1089 0.5694E-3 1.9899 0.1670E-2 1.8295
4225 0.1425E-3 1.9980 0.4399E-3 1.9250

m = 2 100 0.5927E-3 0.2802E-2
324 0.7233E-4 3.0346 0.3740E-3 2.9057
1156 0.8988E-5 3.0085 0.4839E-4 2.9502
4336 0.1122E-5 3.0020 0.6114E-5 2.9843

m = 3 121 0.2441E-4 0.3662E-3
361 0.1398E-5 4.1269 0.2390E-4 3.9378
1225 0.8543E-7 4.0327 0.1508E-5 3.9857
4489 0.5309E-8 4.0082 0.9449E-7 3.9968

Table 5. Relative errors (E2) and rates (dominated by spatial error) for Example 5.1.

Degree DOF L1 scheme Rate L2-1σ scheme Rate

m = 1 81 0.2823E-1 0.4389E-1
289 0.1399E-1 1.0127 0.2186E-1 1.0055
1089 0.6942E-2 1.0109 0.1080E-2 1.0171
4225 0.3461E-2 1.0040 0.5374E-2 1.0070

m = 2 100 0.4250E-2 0.4946E-2
324 0.1048E-2 2.0186 0.1082E-2 2.1913
1156 0.2613E-3 2.0046 0.2583E-3 2.0674
4336 0.6529E-4 2.0011 0.6372E-4 2.0195

m = 3 121 0.1658E-3 0.3997E-3
361 0.1967E-4 3.0751 0.3060E-4 3.7073
1225 0.2426E-5 3.0193 0.2800E-5 3.4500
4489 0.3023E-6 3.0047 0.3087E-6 3.1809

15



Unco
rre

cte
d Pro

of

Table 6. Maximum relative errors (E3) and rates (dominated by temporal error) for the
Example 5.2.

N L1 scheme Rate N L2-1σ scheme Rate

α = 0.4 16 0.1308E-1 16 0.8170E-2
81 0.1020E-2 1.5730 32 0.2379E-2 1.7797
256 0.1634E-3 1.5916 64 0.6389E-3 1.8969
625 0.3900E-4 1.6055 128 0.1652E-3 1.9513

α = 0.6 16 0.2789E-1 16 0.7067E-2
81 0.2590E-2 1.4654 32 0.1861E-2 1.9248
256 0.4834E-3 1.4586 64 0.4754E-3 1.9688
625 0.1376E-3 1.4072 128 0.1200E-3 1.9862

α = 0.8 16 0.3976E-1 16 0.6248E-2
81 0.6010E-2 1.1650 32 0.1591E-2 1.9727
256 0.1521E-2 1.1941 64 0.4005E-3 1.9908
625 0.5213E-3 1.1995 128 0.1003E-3 1.9966

Table 7. Relative errors (E1) and rates (dominated by spatial error) for the Example 5.2.

Degree DOF L1 scheme Rate L2-1σ scheme Rate

m=1 81 0.1636E-1 0.2478E-1
289 0.4286E-2 1.9324 0.7580E-2 1.7091
1089 0.1085E-2 1.9818 0.2072E-2 1.8712
4225 0.2721E-3 1.9957 0.5388E-3 1.9430

m=2 100 0.1048E-2 0.2867E-2
324 0.1267E-3 3.0484 0.3832E-3 2.9034
1156 0.1566E-4 3.0162 0.4963E-4 2.9488
4336 0.1951E-5 3.0045 0.6278E-5 2.9828

m=3 121 0.1084E-3 0.3789E-3
361 0.6836E-5 3.9875 0.2468E-4 3.9400
1225 0.4276E-6 3.9987 0.1557E-5 3.9863
4489 0.2673E-7 3.9998 0.9758E-6 3.9964

solution is u = (t3 + tα)w2. The numerical outcomes obtained through proposed L1 and L2-1σ methods
based scheme (4.2) are exhibited in Tables 6–8. In Table 6, we report maximum relative errors (E3) and
corresponding convergence rates. Tables 7 and 8 show L2(Ω) relative errors (E1) and H

1
0 (Ω) relative errors

(E2), respectively with corresponding rates of convergence for weighted b-splines of degree m = 1, 2, 3.
Finally, we display the plot of the approximate solution and its domain Ω in Figure 3.

Example 5.3. Consider the time-fractional nonlocal diffusion equation (1.1) with the nonlocal termM
( ∫

Ω
u

dx
)

= 3 + cos
(∫

Ω
u dx

)
on domain Ω which is bounded by an ellipse E = {(x, y) := r

′

1(x, y) ≥ 0},

r
′

1 =
(
1−

(
x− 1

2

0.49

)2
−
(

y− 1
2

0.25

)2)
, and a circle C = {(x, y) := r

′

2(x, y) ≥ 0}, r′

2 =
(
x− 1

2

)2
+
(
y− 1

2

)2
−
(

1
8

)2
.

The weight function associated with this domain is given by w = r
′

1r
′

2. The source function f is chosen in
such a manner that the exact solution is u = (t3 + tα)w sinw. The numerical outcomes obtained through
proposed L1 and L2-1σ methods based scheme (4.2) are exhibited in Tables 9–11. In Table 9, we report
maximum relative errors (E3) and corresponding convergence rates. Tables 10 and 11 show L2(Ω) relative
errors (E1) and H

1
0 (Ω) relative errors (E2), respectively with corresponding rates of convergence for weighted

b-splines of degree m = 1, 2, 3. Finally, we display the plot of the approximate solution and its domain Ω
in Figure 4.
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Table 8. Relative errors (E2) and rates (dominated by spatial error) for the Example 5.2.

Degree DOF L1 scheme Rate L2-1σ scheme Rate

m=1 81 0.7704E-1 0.7999E-1
289 0.3850E-1 1.0005 0.3919E-1 1.0294
1089 0.1917E-1 1.0057 0.1918E-1 1.0228
4225 0.9567E-2 1.0030 0.9583E-2 1.0090

m=2 100 0.6116E-2 0.6697E-2
324 0.1509E-2 2.0184 0.1553E-2 2.1080
1156 0.3755E-3 2.0072 0.3785E-3 2.0369
4336 0.9374E-4 2.0021 0.9393E-4 2.0106

m=3 121 0.6611E-3 0.7552E-3
361 0.8286E-4 2.9962 0.8621E-4 3.1308
1225 0.1035E-4 3.0010 0.1045E-4 3.0432
4489 0.1293E-5 3.0005 0.1296E-5 3.0117

Figure 3. Plot of the numerical solution and its domain at T = 0.5 and α = 0.5 for
Example 5.2.

6. Conclusion

In this paper, we solved a time-fractional diffusion equation with a nonlocal diffusion term by proposing
a fully-discrete scheme in a unified way. The scheme resulted in O

(
N−min{2−α, rα}) and O

(
N−min{2, rα})

convergence in time for L1 and L2-1σ methods, respectively in both L2(Ω) and H1
0 (Ω) norms. The scheme

also generated O
(
hm+1

)
and O

(
hm
)
convergence in space in L2(Ω) and H1

0 (Ω) norms, respectively. A
comparison of solutions obtained from weighted b-spline and standard FEM clearly exhibited more accurate
results associated with the proposed weighted b-spline method.
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Table 9. Maximum relative errors (E3) and rates (dominated by temporal error) for the
Example 5.3.

N L1 scheme Rate N L2-1σ scheme Rate

α = 0.4 16 0.6364E-1 16 0.2500E-1
81 0.5924E-2 1.4639 32 0.6683E-2 1.9036
256 0.9502E-3 1.5905 64 0.1709E-2 1.9676
625 0.2284E-4 1.5973 128 0.4302E-3 1.9898

α = 0.6 16 0.9459E-1 16 0.2474E-2
81 0.1346E-1 1.2019 32 0.6568E-2 1.9134
256 0.2776E-2 1.3725 64 0.1673E-2 1.9727
625 0.7957E-3 1.3998 128 0.4205E-3 1.9925

α = 0.8 16 0.1492E-0 16 0.2459E-1
81 0.3456E-1 0.9019 32 0.6515E-2 1.9162
256 0.8755E-2 1.1932 64 0.1658E-2 1.9741
625 0.2986E-2 1.2049 128 0.4165E-3 1.9932

Table 10. Relative errors (E1) and rates (dominated by spatial error) for the Example 5.3.

Degree DOF L1 scheme Rate L2-1σ scheme Rate

m=1 81 0.7011E-1 0.7671E-1
289 0.2371E-1 1.5640 0.2583E-1 1.5703
1089 0.6290E-2 1.9145 0.6820E-2 1.9213
4225 0.1602E-2 1.9735 0.1683E-2 2.0187

m=2 100 0.1455E-1 0.1460E-1
324 0.1712E-2 3.0873 0.1741E-2 3.0680
1156 0.2112E-3 3.0187 0.2160E-3 3.0111
4336 0.2622E-4 3.0098 0.2688E-4 3.0063

m=3 121 0.1817E-2 0.1847E-2
361 0.1390E-3 3.7088 0.1409E-3 3.7121
1225 0.8822E-5 3.9779 0.8948E-5 3.9772
4489 0.5516E-6 3.9993 0.5596E-6 3.9991

Table 11. Relative errors (E2) and rates (dominated by spatial error) for the Example 5.3.

Degree DOF L1 scheme Rate L2-1σ scheme Rate

m=1 81 0.1618E-0 0.2305E-0
289 0.9343E-1 0.7924 0.1271E-0 0.8585
1089 0.4644E-1 1.0085 0.6372E-1 0.9966
4225 0.2305E-1 1.0105 0.3166E-1 1.0091

m=2 100 0.3521E-1 0.3762E-1
324 0.8772E-2 2.0052 0.1000E-1 1.9111
1156 0.2185E-2 2.0051 0.2590E-2 1.9488
4336 0.5445E-3 2.0047 0.6589E-3 1.9753

m=3 121 0.5060E-2 0.7036E-2
361 0.7365E-3 2.7804 0.9889E-3 2.8307
1225 0.9259E-4 2.9917 0.1250E-3 2.9837
4489 0.1155E-4 3.0024 0.1564E-4 2.9984

for providing the Ph.D. scholarship. This work is part of the author’s doctoral thesis under the supervision
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Figure 4. Plot of the numerical solution and its domain at T = 0.5 and α = 0.5 for
Example 5.3.
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