- [1] F. Aliev, N. Hajiyeva, N. Velieva, M. Mutallimov, and R. Tagiyev, Constructing optimal regulator for discrete linear quadratic optimization problem with constraints on control action, Proceedings of the 9 th International Conference on Control and Optimization with Industrial Applications (COIA 2024), (2024), 194–197.
- [2] F. Aliev, M. Mutallimov, N. Hajiyeva, N. Velieva, A. Abbasov, and N. A. Ismayilov, Optimal regulators for multipoint problems of dynamic systems, Proceedings of the 9th International Conference on Control and Optimization with Industrial Applications (COIA 2024), (2024), 332–335.
- [3] F. A. Aliev and N. S. Hajiyeva, Discrete linear quadratic optimization problem with constraints in the form of equalities on control action, TWMS J. App. and Eng. Math., 14(4) (2024), 1466–1472.
- [4] F. A. Aliev, N. S. Hajiyeva, M. M. Mutallimov, N. I. Velieva, and A. A. Namazov, Algorithm for solution of linear quadratic optimization problem with constraint in the form of equalities on control, J. Appl. Comput., Math., 23(3) (2024), 404–414.
- [5] F. A. Aliev, M. A. Jamalbayov, N. A. Valiyev, and N. S. Handajiyeva, Computer model of pump-well-reservoir system based on the new concept of imitational modeling of dynamic systems, International Applied Mechanics, 59(3) (2023), 352–362.
- [6] V. Z. Belenkiy, On mathematical problem having minimal point, Doc. Acad. of sci. of USSR, 183(1) (1968), 15–17.
- [7] G. B. Dantzig and P. Wolfe, Decomposition algorithm for linear programs, Econometrica, 29(4) (1961), 767–778.
- [8] G. B. Dantzig and P. Wolfe, Decomposition algorithm for linear programs, Mathematika, 8(1) (1964), 432–441.
- [9] G. B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations Research, 8(1) (1960), 101–111.
- [10] C. Edirisinge and W. Zienba, A boundary - point LP Solution method and its application to dense linear programs, International Journal of Mathematics in Operational Research, 15(3) (2019), 310–337.
- [11] T. A. Gal, A general method for determining the set of all efficient solutions to a linear vectomaximation problem, Europ. J. Oper. Res., 1(5) (1977), 307–322.
- [12] R. H. Gamidov, Construction of Pareto bound to multiple criteria decision, Transaction of NASA, 3-4 (1999), 271–282.
- [13] A. M. Geoffrion, Solving bicriterion mathematical programming, Oper. Res., 15(1) (1967), 39–54.
- [14] S. I. Hamidov, Effective trajectories of economic dynamics models on graphs, Appl. Comput. Math., 22(2) (2023), 215–224.
- [15] A. Haji Badali, M. S. Hashemi, and M. Ghahremani, Lie symmetry analysis for kawahara-kdv equations, Comput. Methods Differ. Equ., 1 (2013), 135–145.
- [16] L. Ioslovic, Robust Reduction of a class of Large - Scale Linear Programming, SIAM Journal of Optimization, 12 (2002), 262–282.
- [17] J. S. H. Kornbluth and R. E. Steuer, Multiple objective linear fractional programming, Management Sci., 27(9), (1981), 1024–1039.
- [18] L. S. Lasdon, Optimization theory for large systems, M., Nauka, (1975).
- [19] M. V. Meerov and B. L. Litvak, Optimization of multivariable control system, M., Nauka, (1972).
- [20] M. V. Meerov, Research and optimization of multivariable control systems, M., Nauka, (1986).
- [21] M. V. Meerov and B. L. Litvak, Control of Optimization of High - Dimensionality Multivariable Systems, IFAC, Kyoto, (1970).
- [22] P. Naccache, Stability in multicriteria optimization, J. Math. Anal. And Appl., 68(2) (1979), 441–453.
- [23] E. I. Nikolopoulou and G. S. Androulakis, A Dimensional Reduction Approach Based on Essential Constraints in Linear Programming, American Journal of Operational Reseach, 14 (2024), 1–31.
- [24] H. Ozbay, R. Srikant, and S. Yuskel, Preface of the special issue: control, teams, and games, Appl. Comput. Math., 23(3) (2024), 281–281.
- [25] K. Paparrizos, An Exterior Point Simplex Algorithm for (General) Linear Programming Problem, Annals of Operations Research, 46(2) (1993), 497–508.
- [26] V. V. Podinovskiy and V. D. Nogin, Pareto optimal solution of multiple criteria problems, Nauka, (1982).
- [27] E. Polak, On the approximation of solutions to the multiple criteria decision making problems, In: Lectures Notes In Econ. and Math. Syst, Berlin etc., Springer - Verlag, 123 (1976), 271–282.
- [28] L. I. Polishuk, Piecewise linear approximation of Pareto bound for convex bicriterion problems, Novosibirsk, Nayka, (1979).
- [29] D. Qiao, X. K. Wang, J. Q. Wang, and L. Li, Maximum entropy-based method for extracting the underlying probability distributions of Z-number, Appl. Comput. Math., 23(2) (2024), 201-218.
- [30] N. V. Stojkovic and P. S. Stanimirovic, Two direct method in linear programming, European Journal of Operational Research, 131 (2001), 417–439.
- [31] P. Sumathi and A. Gangadadharan, Selection of Constraints with a new approach in linear programming problems, Applied Mathematical Sciences, 8 (2014), 1311–1321.
- [32] P. Sumathi and S. Paulraj, Identification of rendundant constraints in large - scale linear programming with minimal computational effort, Applied Mathematical Sciences, 7 (2013), 3963–3974.
- [33] T. Tanito and Y. Sawaragi, Stability of nondominated solutions in multicriteria decision - making, JOTA, 30(2) (1980), 229–253.
- [34] D. G. Tsarpopoulas, C. D, Nikolakakou, and G. Androlakis, A class of Algorithms for solving LP problem by prioritizing the constraints, American Journal of OR, 13(6) (2023), 177–205.
- [35] V. I. Tsurkov, Decomposition in large-scale problems, M., Nauka, (1981).
- [36] V. I. Tsurkov, Dynamic problems of large dimension, M., Nauka, (1989).
- [37] R. J. Vanderbei, Linear Programming, Foundations and Extentions, International Series in Operations Research and Management Science, 285 (2020).
- [38] F. Vitor and T. Easton, Projected orthogonal vectors in two - dimensional search interior point algorithms for linear programming, Computational Optimization and Application, 83(1) (2022), 211–246.
|