| تعداد نشریات | 45 |
| تعداد شمارهها | 1,429 |
| تعداد مقالات | 17,583 |
| تعداد مشاهده مقاله | 57,200,247 |
| تعداد دریافت فایل اصل مقاله | 19,032,976 |
تغذیه از دانههای گرده پنج رز زینتی: تأثیر آن روی ویژگیهای تولیدمثلی و پارامترهای جدول زندگی کنه شکارگر Amblyseius swirskii | ||
| پژوهش های کاربردی در گیاهپزشکی | ||
| دوره 14، شماره 3، مهر 1404، صفحه 223-236 اصل مقاله (631.47 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/arpp.2025.20101 | ||
| نویسندگان | ||
| نیما صداقت زاده؛ شیما رحمانی* | ||
| گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
| چکیده | ||
| کنه شکارگر Amblyseius swirskii از جمله عوامل مهم کنترل بیولوژیک است. از آنجایی که گرده گیاهان مختلف تیره گلسرخیان به عنوان عاملی اثربخش در بهبود نشوونما و تولیدمثل فیتوزئیدهای شکارگر عمومی معرفی شدهاند، در این مطالعه اثر تغذیه از دانه های گرده پنج رز زینتی (رز مینیاتوری، گل محمدی، رز سفید آوالانچ، رز سفید آیس برگ و رز قرمز سامورائی) بر پارامترهای زیستی این شکارگر مورد بررسی و مقایسه قرار گرفت. آزمایش ها در دمای 2 ± 25 درجه سلسیوس، رطوبت نسبی 10 ± 60 درصد و دوره نوری 16 ساعت روشنایی انجام شدند. در تیمار شاهد، کنه ها با تخم و سایر مراحل نارس کنه تارتن دولکه ای Tetranychus urticae تغذیه شدند. بر اساس نتایج، نرخ ذاتی افزایش جمعیت (r) در شکارگران تغذیه شده با گرده های رز مینیاتوری (206/0 برروز) و گل محمدی (199/0 برروز) بیشتر از بقیه بود. بعد آن، در تیمارهای گرده های رز آوالانچ، سامورایی، آیس برگ و شاهد، به ترتیب 171/0، 166/0، 164/0 و 156/0 بر روز برآورد شد. با وجود مرگ ومیر 4/10 درصدی افراد نارس در تیمار گرده رز مینیاتوری، طول دوره نارس (26/6 روز) و نیز طول دوره پیش از تخم گذاری (2/1 روز) کوتاهتر بود. همچنین، زادآوری و طول دوره تخم گذاری در تیمار گرده گل محمدی (به ترتیب 38/59 تخم/ماده، 25/29 روز) و سپس رز مینیاتوری (به ترتیب 65/42 تخم/ماده، 35/24 روز) بیشتر از سایر تیمارها برآورد شد. بنابراین، تمامی دانه های گرده غذای مناسبی برای این کنه شکارگر بودند، هرچند، گرده های رز مینیاتوری و گل محمدی در مقایسه با تیمارهای دیگر، عملکرد بهتری را در رشدِ جمعیت آن نشان دادند. | ||
| کلیدواژهها | ||
| دموگرافی؛ رژیم غذایی؛ Rosaceae؛ Phytoseiidae؛ کنه شکارگر | ||
| مراجع | ||
|
Alonso CM, Navarro-Fernández C, Arceo-Gómez G, Meindl A, Parra-Tabla V, et al., 2013. Among-species differences in pollen quality and quantity limitation: implications for endemics in biodiverse hotspots. Annals of Botany 112(7): 1461–1469. https://doi.org/10.1093/aob/mct213 Ansari-Shiri H, Fathipour Y, Hajiqanbar H, Riahi E, Riddick EW, 2022. Quality control of the predatory mite Amblyseius swirskii during long‑term rearing on almond Prunus amygdalus pollen. Arthropod-Plant Interactions 16: 645–655. https://doi.org/10.1007/s11829-022-09929-6 Barzkar M, Shishehbo P, Habibpou B, Hemmat A, Riahi E, 2023. Development, survival, and reproduction of Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) feeding on different pollen grains. Acarologia 63 (4): 1062–1071. Bouras SL, Papadoulis GTh, 2005. Influence of selected fruit tree pollen on life history of Euseius stipulates (Acari: Phytoseiidae). Experimental & Applied Acarology 36(1–2): 1–14. https://doi.org/10.1007/s10493-005-2381-5 Calvo FJ, Bolkmans K, Belda JE, 2008. Controlling the tobacco whitefly Bemisia tabaci (Genn.) (Hom.: Aleyrodidae) in horticultural crops with the predatory mite Amblyseius swirskii (Athias-Henriot). Journal of Insect Science 8(4): 1–54. https://doi.org/10.1673/031.008.0401 Calvo FJ, Bolckmans K, Belda JE, 2011. Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. Biocontrol 56: 185–192. https://doi.org/10.1007/s10526-010-9319-5 Chi H, Liu H, 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24: 225–240. Chi H, 1988. Life-table analysis incorporating both sexes and variable development rate among individuals. Environmental Entomology 17(1): 26–34. https://doi.org/10.1093/ee/17.1.26 Chi H, 2024. TWOSEX-MSChart: a computer program for age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/prod02.htm. [Accessed on 7 September 2024]. Delisle JF, Brodeur J, Shipp L, 2015. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Experimental & Applied Acarology 65(4): 483–494. https://doi.org/10.1007/s10493-014-9862-3 Dobson HEM, Bergstrom G, 2000. The ecology and evolution of pollen odors. Plant Systematics & Evolution 222: 63–87. Eini N, Jafari S, Fathipour Y, Zalucki MP, 2022. How pollen grains of 23 plant species affect performance of the predatory mite Neoseiulus californicus. BioControl 67: 173–187. https://doi.org/10.1007/s10526-022-10129-7 Elsayeh WA, Cook C, Wright GA, 2022. B-vitamins influence the consumption of macronutrients in honey bees. Frontiers in Sustainable Food Systems 6: 804002. https://doi.org/10.3389/fsufs.2022.804002 EPPO (European and Mediterranean Plant Protection Organization), 2021. PM6/3(5) Biological control agents safely used in the EPPO region. EPPO Bulletin 51(3): 452-454. https://doi.org/10.1111/epp.12801 Fasulo TR, Denmark HA, 2016. Twospotted spider mite, Tetranychus urticae Koch (Arachnida: Acari: Tetranychidae). Askifas Powered by EDIS. https://edis.ifas.ufl.edu/publication/IN307 [Accessed on 26 Jun 2025]. Fadaei E, Hakimitabar M, Seiedy M, Sarraf Moaieri H, 2018. Effects of different diets on biological parameters of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). International Journal of Acarology 44: 341–346. https://doi.org/10.1080/01647954.2018.1525428 Flechtmann CHW, McMurtry JA, 1992. Studies on how phytoseiid mites feed on spider mites and pollen. International Journal of Acarology 18: 157–162. Gerson U, Weintraub PG, 2012. Mites (Acari) as a factor in greenhouse management. Annual Review of Entomology 57: 229–247. https://doi.org/10.1146/annurev-ento-120710-100639 Ghouizi AE, Bakour M, Laaroussi H, Ousaaid D, El Menyiy N, et al., 2023. Bee pollen as functional food: insights into its composition and therapeutic properties. Antioxidants 12: 557. https://doi.org/10.3390/antiox12030557 Goleva I, Zebitz CP, 2013. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Experimental & Applied Acarology 61(3): 259–283. https://doi.org/10.1007/s10493-013-9700-z Goodman D, 1982. Optimal life histories, optimal notation and the value of reproductive value. The American Naturalist 119 (6): 803–823. Huang YB, Chi H, 2012. Assessing the application of the Jackknife and Bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agriculture & Food Research 61(1): 37–45. https://doi.org/10.30089/JAF.201203.0003 Juan-Blasco M, Qureshi JA, Urbaneja A, Stansly P, 2012. Predatory mite, Amblyseius swirskii (Acari: Phytoseiidae), for biological control of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Florida Entomologist 95: 543–551. http://dx.doi.org/10.1653/024.095.0302 Kadkhodazadeh F, Asadi M, Khanamani M, 2021. Suitability of different pollen grains and Tetranychus urticae as food for the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Persian Journal of Acarology 10(3): 321–334. https://doi.org/10.22073/pja.v10i3.66952 Khanamani M, Fathipour Y, Asghar Talebi A, Mehrabadi M, 2017. Linking pollen quality and performance of Neoseiulus californicus (Acari: Phytoseiidae) in two-spotted spider mite management programmes. Pest Management Science 73: 452–461. https://doi.org/10.1002/ps.4305 Kolokytha PD, Fantinou AA, Papadoulis GTh, 2011. Effect of Several Different Pollens on the Bio-Ecological Parameters of the Predatory Mite Typhlodromus athenas Swirski and Ragusa (Acari: Phytoseiidae). Environmental Entomology 40(3): 597–604. https://doi.org/10.1603/EN10276 Kutuk H, 2018. Performance of the predator Amblyseius swirskii (Athias-Henriot) (Acari: Lamlom M, Fahim SF, Momen FM, 2024. The effects of maize pollen on development and population growth potential of Amblyseius swirskii and Cydnoseius negevi (Acari: Phytoseiidae) in subsequent generations. Persian Journal of Acarology 13(1): 115–130. https://doi.org/10.22073/pja.v13i1.82742 Lopez L, 2023. Meet Amblyseius swirskii (Acari: Phytoseiidae): a commonly used predatory mite in vegetable crops. Journal of Integrated Pest Management 14(1): 20. https://doi.org/10.1093/jipm/pmad018 McMurtry JA, de Moraes GJ, Sourassou NF, 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic & Applied Acarology 18(4): 297–320. https://doi.org/10.11158/saa.18.4.1 Messelink GJ, van Steenpaal SEF, Ramakers PMJ, 2006. Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51: 753–768. https://doi.org/10.1007/s10526-006-9013-9 Mortazavi N, Fathipour Y, Talebi AA, 2019. The efficiency of Amblyseius swirskii in control of Tetranychus urticae and Trialeurodes vaporariorum is affected by various factors. Bulletin of Entomological Research 109(3): 365–375. https://doi.org/10.1017/S0007485318000640 Nemati A, Riahi E, 2019. Does feeding on pollen grains affect the performance of Amblyseius swirskii (Acari: Phytoseiidae) during subsequent generations? Bulletin of Entomological Research 110(4): 449–456. https://doi.org/10.1017/S0007485319000804 Nomikou M, Janssen A, Sabelis MW, 2003. Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Experimental & Applied Acarology 31: 15–26. https://doi.org/10.1023/B:APPA.0000005142.31959.e8 Nomikou M, Janssen A, Schraag R, Sabelis MW, 2001. Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental & Applied Acarology 25: 271–291. https://doi.org/10.1023/A:1017976725685 Onzo A, Houedokoho AF, Hanna R, 2012. Potential of the predatory mite, Amblyseius swirskii to suppress the broad mite, Polyphagotarsonemus latus on the gboma eggplant, Solanum macrocarpon. Journal of Insect Science 12(7): 1–11. https://doi.org/10.1673/031.012.0701 Park HH, Shipp L, Buitenhuis R, 2010. Predation, development, and oviposition by the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). Journal of Economic Entomology 103: 563–569. https://doi.org/10.1603/EC09161 Park HH, Shipp L, Buitenhuis R, Ahn JJ, 2011. Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). Journal of Asia-Pacific Entomology 14: 497–501. Pena JE, Rodrigues JCV, Roda A, Carrillo D, Osborne LS, 2009. Predator-prey dynamics and strategies for control of the red palm mite (Raoiella indica) (Acari: Tenuipalpidae) in areas of invasion in the Neotropics. IOBC-WPRS Bulletins 50: 69–79. Pirayeshfar F, Safavi SA, Moayeri HRS, Messelink GJ, 2021. Provision of astigmatid mites as supplementary food increases the density of the predatory mite Amblyseius swirskii in greenhouse crops, but does not support the omnivorous pest, western flower thrips. BioControl 66: 511–522. https://doi.org/10.1007/s10526-021-10092-9 Rahmani Piyani A, Shishehbor P, Kocheili F, Riddick EW, 2021. Comparison of natural prey Tetranychus turkestani, date palm pollen, and bee pollen diets on development, reproduction, and life table parameters of the predator Amblyseius swirskii. Acarologia 61(4): 890–900. https://doi.org/10.24349/G9ed-QB9h Riahi E, Fathipour Y, Talebi AA, Mehrabadi M, 2017a. Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Annals of the Entomological Society of America 110: 244–253. https://doi.org/10.1093/aesa/saw091 Riahi E, Fathipour Y, Talebi A, Mehrabadi M, 2017b. Natural diets versus factitious prey: comparative effects on development, fecundity and life table of Amblyseius swirskii (Acari: Phytoseiidae). Systematic & Applied Acarology 22(5): 711–723. https://doi.org/10.11158/saa.22.5.10 Rodríguez-Pólit C, Gonzalez-Pastor R, Heredia-Moya J, Carrera-Pacheco SE, Castillo-Solis F, et al., 2023. Chemical properties and biological activity of bee pollen. Molecules 28: 7768. https://doi.org/10.3390/molecules28237768 Roulston TH, Cane JH, 2000. Pollen nutritional content and digestibility for animals. In: Dafni A, Hesse M, Pacini E (eds). Pollen and Pollination. Springer-Verlag, Vienna. Pp. 187-211. Sarwar M, 2016. Comparative life history characteristics of the mite predator Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on mite and pollen diets. International Journal of Pest Management, 62(2): 140-148. https://doi.org/10.1080/09670874.2016.1146806 Shirvani Z, Döker I, Karut K, Kazak C, 2023. Foraging behavior of Amblyseius swirskii (Acari: Phytoseiidae) feed on the invasive pest Tetranychus evansi (Acari: Tetranychidae) on tomato. Systematic & Applied Acarology 28(2): 223–235. https://doi.org/10.11158/saa.28.2.6 Singh MB, Knox RB, 1985. b-Galactosidases of Lilium pollen. Phytochemistry 24: 1639–1643. https://doi.org/10.1016/S0031-9422(00)82526-1 Smucker MD, Allan J, Carterette B, 2007. Comparison of statistical significance tests for information retrieval evaluation. XVI ACM Conference on Information and Knowledge Management, November 9, Lisbon, Portugal. Pp. 623–632. Snyder WE, Joseph SB, Preziosi R, Moore AJ, 2000. Nutritional benefits of cannibalism for the lady beetle Harmonia axyridis (Coleoptera: Coccinellidae) when prey quality is poor. Environmental Entomology 29: 1173–1179. https://doi.org/10.1603/0046-225X-29.6.1173 Soltaniyan A, Kheradmand K, Fathipour Y, Shirdel D, 2018. Suitability of pollen from different plant species as alternative food sources for Neoseiulus californicus (Acari: Phytoseiidae) in comparison with a natural prey. Journal of Economic Entomology 111(5): 2046–2052. https://doi.org/10.1093/jee/toy172 Southwood R, 1966. Ecological Methods: with particular reference to the study of insect populations/TRE. southwood. 1st edition, Methuen & Co Ltd, UK. 391 pp. https://doi.org/10.2307/1936978 Swirski E, Amitai S, 1997. Annotated list of Phytoseiid mites (Mesostigmata: Phytoseiidae) in Israel. Israel Journal of Entomology 31: 21–46. Thao NTP, Thuy NT, Quyen HL, 2023. Effects of different diets on biological characteristics of predatory mite Amblyseius Eharai (Acari: Phytoseiidae). Insects 14(6): 519. https://doi.org/10.3390/insects14060519 Vangansbeke D, Nguyen DT, Audenaert J, Gobin B, Tirry L, et al., 2016. Establishment of Amblyseius swirskii in greenhouse crops using food Supplements. Systematic & Applied Acarology 21(9): 1174–1184. http://doi.org/10.11158/saa.21.9.2 Van Rijn PCJ, Tanigoshi LK, 1999. Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experimental & Applied Acarology 23: 785–802. https://doi.org/10.1023/A:1006227704122 Xiao Y, Avery P, Chen J, McKenzie C, Osborne L, 2012. Ornamental peppers as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production. Biological Control 63(3): 279–286. https://doi.org/10.1016/j.biocontrol.2012.09.007 Zannou ID, Hanna R, 2011. Clarifying the identity of Amblyseius swirskii and Amblyseius rykei (Acari: Phytoseiidae): are they two distinct species or two populations of one species? Experimental & Applied Acarology 53: 339-347. https://doi.org/10.1007/s10493-010-9412-6 Zhang ZQ, 2003. Mites of greenhouses: Identification, biology and control. CABI Publishing, Cambridge, UK. 244 pp.
| ||
|
آمار تعداد مشاهده مقاله: 176 تعداد دریافت فایل اصل مقاله: 32 |
||