- [1] M. Abbaszadeh, A. Bagheri Salec, A. Al-Khafaji, and S. Kamel, The Effect of Fractional-Order Derivative for Pattern Formation of Brusselator Reaction–Diffusion Model Occurring in Chemical Reactions, Iranian Journal of Mathematical Chemistry, 14(4) (2023), 243-269.
- [2] M. A. Abdelkawy, A. Z. M. Amin, and A. M. Lopes, Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations, Computational and Applied Mathematics, 41(1) (2022), 2.
- [3] B. N. Abood, Approximate solutions and existence of solution for a Caputo nonlocal fractional volterra fredholm integro-differential equation, International Journal of Applied Mathematics, 33(6) (2020), 1049.
- [4] R. Akbari and L. Navaei, Fractional Dynamics of Infectious Disease Transmission with Optimal Control, Mathematics Interdisciplinary Research, 9(2) (2024), 199-213.
- [5] M. Akbar, R. Nawaz, S. Ahsan, K. S. Nisar, A. H. AbdelAty, and H. Eleuch, New approach to approximate the solution for the system of fractional order Volterra integro-differential equations, Results in Physics, 19 (2020), 103453.
- [6] M. Asgari, Numerical Solution for solving a system of Fractional Integro-differential Equations, IAENG International Journal of Applied Mathematics, 45(2) (2015), 85-91.
- [7] D. Baleanu, A. Saadatmandi, A. Kadem, and M. Dehghan, The fractional linear systems of equations within an operational approach, Journal of Computational and Nonlinear Dynamics, 8(2) (2013), 021011.
- [8] M. Bergounioux, A. Leaci, G. Nardi, and F. Tomarelli, Fractional Sobolev Spaces and Functions of Bounded Variation of One Variable, Fractional Calculus and Applied Analysis, 20(4) (2017), 936-962.
- [9] J. Biazar, H. Ghazvini, and M. Eslami, He’s homotopy perturbation method for systems of integro-differential equations, Chaos, Solitons and Fractals, 39(3) (2007), 1253-1258.
- [10] A. M. Bijura, Systems of Singularly Perturbed Fractional Integral Equations II, IAENG International Journal of Applied Mathematics, 42(4) (2012), 198-203.
- [11] C. M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, Journal of Computational Physics, 227(2) (2007), 886-897.
- [12] W. Dahmen, B. Han, R.Q, Jia, and A. Kunoth, Biorthogonal multiwavelets on the interval: cubic Hermite splines, Constructive Approximation, 16 (2000), 221-259.
- [13] W. Dahmen, A. Kunoth, and K. Urban, Biorthogonal Spline Wavelets on the Interval-Stability and Moment Conditions, Applied and Computational Harmonic Analysis, 6 (1999), 132-196.
- [14] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New York, 2008.
- [15] A. Hamoud, Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations, Advances in the Theory of Nonlinear Analysis and its Application, 4(4) (2020), 321-331.
- [16] M. H. Heydari, M. R. Hooshmandasl, and F. Mohammadi, Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Communications in Nonlinear Science and Numerical Simulation, 19(1) (2014), 37-48.
- [17] I. Hashim, O. Abdulaziz, and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Communications in Nonlinear Science and Numerical Simulation, 14(3) (2009), 674-684.
- [18] E. Hesameddini and A. Rahimi, A new numerical scheme for solving systems of integro-differential equations, Computational Methods for Differential Equations, 1(2) (2013), 108-119.
- [19] K. Diethelm, The analysis of fractional differential equations, Berlin, Springer-Verlag, 2010.
- [20] M. M. Khader and N. H. Swilam, On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral method, Applied Mathematical Modelling, 37(24) (2013), 9819-9828.
- [21] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
- [22] A. M. Mahdi and E. M. Mohamed, Numerical studies for solving system of linear fractional integro-differential equations by using least squares method and shifted Chebyshev polynomials, Journal of Abstract and Computational Mathematics, 1(1) (2016), 24-32.
- [23] V. Mazja, Sobolev Spaces, New York, Springer-Verlag, 1985.
- [24] K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- [25] R. Mohammadzadeh, M. Lakestani, and M. Dehghan, Collocation method for the numerical solutions of LaneEmden type equations using cubic Hermite spline functions, Mathematical Methods in the Applied Sciences, 37(9) (2014), 1303-1717.
- [26] S. Momani and R. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Computersand Mathematics with Applications, 52(3-4) (2006), 459-470.
- [27] S. Momani and Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys Lett A, 355(4-5) (2006), 271-279.
- [28] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
- [29] I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA 1999.
- [30] E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Applied mathematics and computation, 176(1) (2006), 1-6.
- [31] S. Sabermahani, Y. Ordokhani, and P. Rahimkhani, Spectral methods for solving integro-differential equations and bibiliometric analysis, Topics in Integral and Integro-Differential Equations. Theory and Applications, (2021), 169-214.
- [32] S. Sabermahani and Y. Ordokhani, A new operational matrix of Muntz-Legendre polynomials and Petrov-Galerkin method for solving fractional Volterra-Fredholm integro-differential equations, Computational Methods for Differential Equations, 8(3) (2020), 408-423.
- [33] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
- [34] S. Shahmorad, S. Pashaei, and M. S. Hashemi, Numerical solution of a nonlinear fractional integro-differential equation by a geometric approach, Differential Equations and Dynamical Systems, 29 (2021), 585-596.
- [35] H. Singh, H. Dutta, and M. M. Cavalcanti, Topics in Integral and Integro-Differential Equations, Springer International Publishing., 2021.
- [36] Y. Yan, K. Pal, and N. J. Ford, Higher order numerical methods for solving fractional differential equations, BIT Numer Math, 54 (2014), 555-584.
- [37] M. Zurigat, S. Momani, and A. Alawneh, Homotopy analysis method for systems of fractional integro-differential equations, Neural, Parallel and Scientific Computations, 17(2) (2009), 169.
|