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Abstract

In this article, we solve systems of fractional Volterra integro-differential equations in the sense of the Caputo

fractional derivative, using cubic Hermite spline functions. We first construct the operational matrix for the

fractional derivative of the cubic Hermite spline functions. Then, using this matrix and key properties of these
functions, we transform systems of fractional Volterra integro-differential equations into a system of algebraic

equations, which can be solved numerically to obtain approximate solutions. Numerous examples show that the

results obtained by this method align closely with the results presented by some previous works.
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1. Introduction

Fractional differential equations (FDEs) and fractional Volterra integro-differential equations (FVIDEs) play im-
portant role in various scientific fields, including physics, chemistry, biology, mechanics, fluid flow, image processing,
engineering, and more. Numerous authors have investigated analytical results concerning the existence and uniqueness
of solutions to FVIDEs (see [3, 15, 16] for examples). Consequently, solving these equations has attracted the attention
of many researchers. Since most FVIDEs systems lack exact analytical solutions, approximate and numerical methods
have become the preferred approach. Some of these numerical approximations are mentioned as follows.

Abdelkawy et al. [2] successfully solved nonlinear variable-order fractional Fredholm integro-differential equations
using a collocation method based on fractional-order Legendre functions. In [6], an operational matrix method based
on triangular functions was utilized to solve a system of fractional Integro-differential equations. The authors in [22]
solved a system of linear fractional integro-differential equations using least squares method and shifted Chebyshev
polynomials, while Shahmorad et al. [34] employed a geometric approach for solving nonlinear fractional integro-
differential equations. Haydari et al. [16] utilized a wavelet collocation method for solving systems of nonlinear
singular fractional Volterra integro-differential equations based on Chebyshev polynomials, and in [36], two ideas
based on discretization of the fractional differential operator and integral form of the FDEs were used to develop
higher order numerical techniques for solving FDEs. In addition, optimal homotopya symptotic method was employed
to solve a system of fractional order Volterra Integro-differentiale quations in [5]. Furthermore, Khader et al. [20]
solved system of linear and nonlinear fractional integro-differential equations of Volterra type using the Chebyshev
pseudo-spectral method. For further research works on this problem, we recommend interested readers to refer to
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[1, 4, 7, 9, 10, 18, 26, 30–32, 35–37]. A comprehensive history of fractional differential operators and their applications
can be found in [11, 14, 19, 21, 24, 27–29], with [19] and [29] being two excellent references on FDEs.

In this paper, we would like to solve a fractional initial value problem (FIVP) in the form{
∗D

αi
0 yi(x) = fi

(
x, y1(x), ..., yn(x)

)
+
∫ x

0
ki
(
x, t, y1(t), ..., yn(t)

)
dt, 0 < αi < 1, 0 < x ≤ 1,

yi(0) = bi, i = 0, 1, ..., n.
(1.1)

where ∗Dαi
0 denotes the Caputo fractional derivative of order αi, bi are real constants, and fi, ki are continuous

functions.
A common strategy, to solve fractional equations, the solution is first written as a linear combination of basis

functions. Then, by using a truncated series of basis functions and applying operational matrices, the problem is
reduced to a system of linear or nonlinear algebraic equations that can be easily solved.

In this article, we first construct the operational matrix for fractional derivative of cubic Hermit spline functions
(CHSFs). Next, we express the unknown functions as a linear combination of CHSFs with unknown coefficients.
Finally, using the operational matrix for derivative and the collocation method, we reduce the problem (1.1) to a
system of algebraic equations, which can be solved to find the unknown coefficients.

This paper is organized into five sections. In section 2 we give some preliminaries and definitions needed for our
work. In section 3, the numerical method is presented. A convergence analysis of the method is discussed in section
4, and we show that if the unknown function lies in H4(Ω), where Ω is the domain of the problem, then the order
of convergence will be O(2−4J). Some numerical examples are presented to show the efficiency and validity of the
method in section 5. We finish the paper with a conclusion and suggest a future work.

2. Preliminaries and notations

2.1. The fractional derivative in the Caputo sense and some other definitions. In this section, we recall the
basic concepts and definitions of fractional calculus that are most frequently used in the following sections.

Fractional derivatives and integrals of order α > 0 have various definitions. The two most important ones are the
Riemann-Liouville and Caputo definitions [19, 29], which we describe below.

Definition 2.1. [19] Let α be a positive real number. The Riemann-Liouville fractional integral operator of order α,
denoted by Jα

a , is defined on the interval [a, b] and acts on functions in L1[a, b] as

Jα
a f(x) :=

1

Γ(α)

∫ x

a

(x− t)n−1f(t)dt, a ≤ x ≤ b.

Specifically, when α = 0, we define J0
af(x) = f(x).

Definition 2.2. [19] Let α ≥ 0 and m = ⌈α⌉. Then the Caputo fractional derivative (CFD) of order α is defined as

∗D
α
a f(x) = Jm−α

a Dmf(x),

when Dmf ∈ L1[a, b]. Using Definition 2.1, it is then written in the following form

∗D
α
a f(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t)dt.

In special cases, for the Caputo derivative when β ⩾ 0, we have

∗D
α
aC = 0, (C is constant),

∗D
α
a xβ =

{
0, forβ = {0, 1, 2, ...,m− 1},
Γ(β+1)

Γ(β+1−α) xβ−α, for β ∈ N and β ⩾ m or β /∈ N and β > m− 1.

It is worth noting that the ceiling function ⌈α⌉ is the smallest integer greater than or equal to α and the floor function
⌊α⌋ is the largest integer less than or equal to α.

Recall that the operator ∗D
α
a is linear, i.e.,

∗D
α
a

(
Af(x) +Bg(x)

)
= A ∗D

α
a f(x) +B ∗D

α
a g(x),
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where A and B are arbitrary constants.

Definition 2.3. For an interval x ∈ [a, b], let p ⩾ 1. The set of functions{
f |f : [a, b] −→ C :

∫ b

a

|f(x)|p < ∞

}
,

forms a normed vector space over the field C, denoted by Lp[a, b].

Definition 2.4. For each f ∈ Lp[a, b], the norms of the function f are defined as follows:

||f ||p =
( ∫ b

a

|f(x)|pdx
) 1

p ,

||f ||∞ =
(
ess supx∈[a,b]|f(x)|

)
.

Definition 2.5. Let Ω be an open subset of R. Then the space Hs(Ω) defined by

Hs(Ω) = {f ∈ L2(Ω); f (α) ∈ L2(Ω), ∀α, 0 ≤ α ≤ s}

is called the Sobolev space of order s [23]. The norm for this space is defined by

∥f∥s,Ω =

(
s∑

α=0

∥f (α)∥2L2(Ω)

) 1
2

.

For the non-integer value s ∈ (0, 1), the fractional Sobolev space is defined as [8]

W s,2(a, b) =

{
f ∈ L2(a, b) :

f(x)− f(y)

|x− y| 12+s
∈ L2([a, b]× [a, b])

}
,

with the corresponding norm

||f ||W s,2(a,b) =

[∫ b

a

|f(x)|2dx+

∫ b

a

∫ b

a

|f(x)− f(y)|2

|x− y|1+2s
dxdy

] 1
2

.

If s = n+ µ > 1 where n ∈ N and µ ∈ (0, 1), then the fractional Sobolev space is defined as

W s,2(a, b) =
{
f ∈ Hn(a, b) : Dnf ∈ Wµ,2(a, b)

}
.

2.2. Cubic Hermite spline functions on [0, 1]. A cubic Hermite spline (or cubic Hermite interpolator) is a spline
function such that each piece is a third-degree polynomial specified in Hermite form. In other words, cubic Hermite
spline functions are defined by [12, 13, 25]

ϕ1(x) =


(x+ 1)2(−2x+ 1), x ∈ [−1, 0],

(1− x)2(2x+ 1), x ∈ [0, 1],

0, o.w.,

(2.1)

ϕ2(x) =


(x+ 1)2x, x ∈ [−1, 0],

(1− x)2x, x ∈ [0, 1],

0, o.w.,

(2.2)

these functions satisfy the following interpolation properties.

ϕ1(k) = ϕ′
2(k) = δ0,k, ϕ′

1(k) = ϕ2(k) = 0, (k ∈ Z),
where δ0,k is the Kronecker delta. The integer transformations of ϕ1 and ϕ2 form a basis for the space of C1-continuous
piecewise cubic functions on R that interpolate function values and their first derivatives at k ∈ Z. The dilation and
translation parameters are denoted by 2j and k, respectively where j, k ∈ Z. For l = 1, 2, we can express any function
in this space as a linear combination of ϕl(2

jx− k).
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Suppose

Bj,k(x) = supp
[
ϕj,k
l (x)

]
= clos

{
x : ϕj,k

l (x) ̸= 0
}
,

with simple calculations, it can be shown that

Bj,k(x) =
[k − 1

2j
,
k + 1

2j

]
, for j, k ∈ Z.

We define the index set as follows

Sj =
{
Bj,k ∩ (0, 1) ̸= ∅

}
, j, k ∈ Z.

It is evident that for j ∈ Z, Sj =
{
0, 1, 2, ..., 2j

}
.

To define cubic Hermite functions on [0, 1], we set

ϕj,k
l (x) = ϕj,k

l (x).χ[0,1](x), j ∈ Z, k ∈ Sj , l = 1, 2.

2.3. Function approximation. Let Φj(.) be a 2(2j + 1)-dimensional vector:

Φj(.) =
[
ϕj,0
1 (.), ϕj,0

2 (.), ..., ϕj,2j

1 (.), ϕj,2j

2 (.)
]T

, j ∈ Z. (2.3)

Due to the interpolatory nature of the functions ϕ1 and ϕ2, j = J for a fixed, it is possible to approximate a function
f ∈ H4[0, 1] using cubic Hermite functions as

f(x) ≃
2J∑
κ=0

(
c1,κ ϕJ,κ

1 (x) + c2,κ ϕJ,κ
2 (x)

)
= CT ΦJ(x), (2.4)

where

c1,κ = f(
κ

2J
), c2,κ = 2−J f ′(

κ

2J
), κ = 0, 1, . . . , 2J ,

and C is a N -dimensional vector defined as

C =
[
c1,0, c2,0, ..., c1,2J , c2,2J

]T
,

where N = 2(2J + 1).

2.4. Fractional Derivative Operational Matrix. The Caputo fractional derivative (CFD) of order αi, (0 ≤ αi <
1, i = 1, 2, ..., n) for functions ϕJ,k

r (.), k ∈ Sj(r = 1, 2) can be approximated as

∗D
αi
0 ϕJ,ℓ

r (x) = ∗D
αi
0 ϕr(2

Jx− ℓ)

≃
∑2J

k=0

{
∗D

αi
0 ϕr(k − ℓ)ϕ1(2

Jx− k) + 2−JD
(
∗D

αi
0 ϕr(x)

)∣∣
x=k−ℓ

ϕ2(2
Jx− k)

}
,

(2.5)

where D denotes the classical first derivative and ℓ = 0, 1, . . . , 2J . Using the relation (2.5) we can find the CFD of
order αi for the vector function ΦJ in form

∗D
αi
0 ΦJ(x) ≃ Dαi ΦJ(x), i = 1, 2, ..., n, (2.6)

where Dαi
(i = 1, 2, ..., n) are N ×N operational matrices of fractional derivative. For the special case J = 1, i = 2

and α1 = 1
4 , α2 = 1

2 , the matrices Dα1
and Dα2

are as follows:
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Dα1
=



0 0 −96
77

2
7
4

Γ( 3
4
)

16
7

2
1
4

Γ( 3
4
)

1
77

−608 2
1
4 +640

Γ( 3
4
)

1
77

−2640 2
1
4 +3168

Γ( 3
4
)

0 0 −4
77

2
1
4

Γ( 3
4
)

10
21

2
1
4

Γ( 3
4
)

1
231

−736 2
1
4 +872

Γ( 3
4
)

1
231

−3344 2
1
4 +3982

Γ( 3
4
)

0 0 96
77

2
7
4

Γ( 3
4
)

−16
7

2
1
4

Γ( 3
4
)

1
77

5122 2
1
4 −640

Γ( 3
4
)

1
77

2816 2
1
4 +3168

Γ( 3
4
)

0 0 32
231

2
1
4

Γ( 3
4
)

80
21

2
1
4

Γ( 3
4
)

1
231

−1408 2
1
4 +1664

Γ( 3
4
)

1
231

−4928 2
1
4 +5984

Γ( 3
4
)

0 0 0 0 96
77

2
7
4

Γ( 3
4
)

−16
7

2
1
4

Γ( 3
4
)

0 0 0 0 32
231

2
1
4

Γ( 3
4
)

80
21

2
1
4

Γ( 3
4
)


,

Dα2
=



0 0 −8
√
2

5
√
π

8
√

2√
π

96−72
√

2
5
√
π

80−56
√
2√

π

0 0 −2
√
2

15
√

π
2
√

2√
π

124−88
√
2

15
√

π
34−24

√
2√

π

0 0 8
√
2

5
√
π

−8
√
2√

π

−32(3−2
√
2)

15
√

π

16(4
√
2−5)√
π

0 0 8
√
2

15
√

π
8
√

2√
π

32(5
√
2−7)

15
√

π

−16(30
√
2−45)

15
√
π

0 0 0 0 96
77

2
7
4

Γ( 3
4
)

−16
7

2
1
4

Γ( 3
4
)

0 0 0 0 32
231

2
1
4

Γ( 3
4
)

80
21

2
1
4

Γ( 3
4
)



.

3. Methodology Description

In this section, we solve the FIVP (1.1) using cubic Hermite spline functions. For the unknown functions yi(i =
1, 2, ..., n) in (1.1), we use (2.4) to obtain the approximation:

yi(x) ≃ yiJ (x) =

2J∑
k=0

{
Y i
1,k ϕJ,k

1 (x) + Y i
2,k ϕJ,k

2 (x)
}
= Y iTΦJ(x), (3.1)

where Y i(i = 1, 2, .., n) are unknown vectors defined by:

Y i =
[
Y i
1,0, Y

i
2,0, Y

i
1,1, Y

i
2,1, . . . , Y

i
1,2J , Y

i
2,2J

]T
.

Using the operational matrix from (2.6), we approximate ∗D
αi
0 yi(x) as

∗D
αi
0 yi(x) ≃ ∗D

αi
0 Y iTΦJ(x) ≃ Y iTDαi

ΦJ(x). (3.2)

Substituting (3.1) and (3.2) into Eq. (1.1), for i = 1, 2, ..., n and 0 < αi < 1 we get

Y iTDαiΦJ(x) ≃ fi
(
x, Y 1TΦJ(x), ..., Y

nT

ΦJ(x)
)
+

∫ x

0

ki
(
x, t, Y 1TΦJ(t), . . . , Y

nT

ΦJ(t)
)
dt,

0 < x ≤ 1,

(3.3)

also by replacing (3.1) in the initial condition of problem (1.1), we obtain

Y iTΦJ(0) = bi, i = 1, 2, . . . , n. (3.4)

By collocating Eq. (3.3) at the N − 1 equally spaced nodes xj ∈ [0, 1], for j = 1, 2, ..., N − 1, we have

Y iTDαi
ΦJ(xj) ≃ fi

(
xj , Y

1TΦJ(xj), . . . , Y
nT

ΦJ(xj)
)
+

∫ xj

0

ki
(
xj , t, Y

iTΦJ(t), . . . , Y
iTΦJ(t)

)
dt,

j = 1, 2, 3, . . . , N − 1.

(3.5)
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The integrals in Eq. (3.5) are evaluated using a suitable Newton-Cotes method, thus, we obtain:

Y iTDαi
ΦJ(xj) ≃ fi

(
xj , Y

1TΦJ(xj), . . . , Y
nT

ΦJ(xj)
)

+

mj∑
ℓ=0

wℓki
(
xj , t, Y

iTΦJ(tℓ), . . . , Y
iTΦJ(tℓ)

)
dt, j = 1, 2, 3, . . . , N − 1,

(3.6)

where wℓ, ℓ = 0, 1, . . . ,mj are the Newton-Cotes quadrature weights. Combining (3.6) and (3.4) yields a system of
n×N algebraic equations with n×N unknowns, which is solved for the unknown vectors Y i. Thus, the solutions yi
to (1.1) are obtained.

We recall that the matrix method solves the algebraic systems.

4. Convergence Analysis

Theorem 4.1. [12, 13] Let f ∈ H4[0, 1], and fJ be the projection of f on the space VJ . Then we have

inf ∥f(x)− fJ(x)∥L2([0,1]) ≤ 2−4J∥f∥4,(0,1) = O(2−4J). (4.1)

Definition 4.2. Let F = [f1, f2, ..., fn]
T ∈ C

(
[0, 1]×Rn,Rn

)
and K = [k1, k2, ..., kn]

T ∈ C
(
[0, 1]2 ×Rn,Rn

)
. Assume

these functions satisfy the following Lipschitz conditions for some real constants Lp, Lq > 0

∥F (x, z1)− F (x, z2)∥2 ≤ Lp∥z1 − z2∥2, ∥K(x, t, z1)−K(x, t, z2)∥2 ≤ Lq∥z1 − z2∥2, z1, z2 ∈ Rn. (4.2)

Let Y = [y1, y2, ..., yn]
T ∈ C1(Rn) be the solution of the nonlinear fractional Volterra integro-differential system

(1.1). We rewrite this system in the following form:{
∗D

α
0 Y (x) = F

(
x, Y (x)

)
+
∫ x

0
K(x, t, Y (t))dt, 0 < α < 1, 0 < x ≤ 1,

Y (0) = Y0,
(4.3)

where α = [α1, α2, ..., αn] and Y0 = [b1, b2, ..., bn].
Let Y and YJ denote the exact and approximate solutions of the FIVP (4.3), respectively. Then we have{

∗D
α
0 YJ(x) = F(x, YJ(x)) +

∫ x

0
K(x, t, YJ(t))dt+ rJ(x), 0 < x ≤ 1,

YJ(0) = Y0,
(4.4)

where rJ(x) is the residual term of the approximation. In the following theorem we find an upper bound for rJ(x).

Theorem 4.3. Let Y (x) ∈ H4[0, 1] and YJ(x) denote the exact and approximate solutions of the FIVP (4.3), re-
spectively. Assume ∗D

α
0 Y (x) ∈ H4[0, 1], with F and K Lipschitz continuous in their second and third arguments,

respectively.” Then we have

∥rJ(x)∥2 = ∥∗Dα
0 YJ(x)− F

(
x, YJ(x)

)
−
∫ x

0

K
(
x, t, YJ(t)

)
dt∥2 = O(2−4J). (4.5)

Proof. From the definition of finction rJ(x), we can conclude that:

∥rJ(x)∥2 =

∥∥∥∥∗Dα
0 YJ(x)− F

(
x, YJ(x)

)
−
∫ x

0

K
(
x, t, YJ(t)

)
dt

∥∥∥∥
2

= ∥
{

∗D
α
0 YJ(x)− ∗D

α
0 Y (x) + F

(
x, Y (x)

)
+

∫ x

0

K
(
x, t, Y (t)

)
dt

}
−
{
F
(
x, YJ(x)

)
+

∫ x

0

K
(
x, t, YJ(t)

)
dt

}
∥2

≤
{
||∗Dα

0 Y (x)− ∗D
α
0 YJ(x)||2 + ||F

(
x, Y (x)

)
− F
(
x, YJ(x)

)
||2
}

+

{∫ x

0

||K
(
x, t, Y (t)

)
−
∫ x

0

K
(
x, t, YJ(t)

)
||2dt

}
.
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Applying (4.1) for the first relation and (4.2) for the last two relations, we have

∥∗Dα
0 Y (x)− ∗D

α
0 YJ(x)∥2 = O(2−4J), (4.6)∥∥F(x, Y (x)

)
− F
(
x, YJ(x)

)∥∥
2
≤ Lp ∥Y (x)− YJ(x)∥2 ,∥∥∥K(x, t, Y (x)

)
−K

(
x, t, YJ(x)

)∥∥∥
2
≤ Lq ∥Y (x)− YJ(x)∥2 .

Using (4.1) for the last two relations, we get∣∣∣∣F(x, Y (x))− F
(
x, YJ(x)

)∣∣∣∣
2
= O(2−4J), (4.7)∣∣∣∣K(x, t, Y (x))−K

(
x, t, YJ(x)

)∣∣∣∣
2
= O(2−4J). (4.8)

Combining (4.6), (4.7), and (4.8) completes the proof. □

Theorem 4.4. Let Y (x) ∈ H4[0, 1] and YJ(x) are the exact and approximate solution of FIVP (4.3), respectively,
and the functions F,K are Lipschitz continuous functions with respect to second and third variable. Then, we have

eJ(x) = ∥Y (x)− YJ(x)∥2 = O(2−4J). (4.9)

Proof. Applying the Riemann-Liouville fractional integral on both sides of FDEs in (4.3), (4.4), and the related initial
values, we get

Y (x) = Y (0) +
1

Γ(α)

∫ x

0

(x− z)α−1F
(
z, Y (z)

)
dz +

1

Γ(α)

∫ x

0

(x− z)α−1

∫ z

0

K
(
z, t, Y (t)

)
dtdz, (4.10)

and

YJ(x) = Y (0) +
1

Γ(α)

∫ x

0

(x− z)α−1F
(
z, YJ(z)

)
dz

+
1

Γ(α)

∫ x

0

(x− z)α−1

∫ z

0

K
(
z, t, YJ(t)

)
dtdz − 1

Γ(α)

∫ x

0

(x− z)α−1eJ(z)dz.

(4.11)

Subtrcting Eq. (4.11) from (4.10) we get

||Y (x)− YJ(x)||2 =

∥∥∥∥ 1

Γ(α)

∫ x

0

(x− z)α−1
(
F(z, Y (z))− F(z, YJ(z))

)
dz

+
1

Γ(α)

∫ x

0

∫ z

0

(x− z)α−1
(
K(z, t, Y (t))−K(z, t, YJ(t))

)
dtdz

− 1

Γ(α)

∫ x

0

(x− z)α−1rJ(z)dz

∥∥∥∥
2

≤ 1

Γ(α)

∫ x

0

|x− z|α−1dz
(
||F(x, Y (x))− F(x, YJ(x))||2

+

∫ z

0

||K(x, t, Y (t))−K(x, t, YJ(t))||2dt+ ||rJ(x)||2
)

≤ 1

Γ(α+ 1)

(
Lp||F(x, Y (x))− F(x, YJ(x))||2 + Lq||K(x, t, Y (t))−K(x, t, YJ(t))||2 + ||rJ(x)||2

)
,

and so

||Y (x)− YJ(x)||2 ≤ 1

Γ(α+ 1)

(
Lp||F(x, Y (x))− F(x, YJ(x))||2

+ Lq||K(x, t, Y (t))−K(x, t, YJ(t))||2 + ||rJ(x)||2
)
.

(4.12)

Applying the relations (4.7) and (4.8) in (4.12) implies

eJ(x) = ||Y (x)− YJ(x)||2 = O(2−4J),

which completes the proof. □
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Table 1. The Computational results for Example 5.1.

xi |y1ex − y1app| |y2ex − y2app| |y1ex − y1app|[5] |y2ex − y2app|[5]

0 0 0 0 0
0.1 0 0 5.23× 10−7 1.40× 10−7

0.2 0 0 2.39× 10−6 6.23× 10−7

0.3 0 0 4.69× 10−6 9.53× 10−7

0.4 0 0 6.01× 10−6 7.15× 10−8

0.5 0 0 5.76× 10−6 4.25× 10−6

0.6 0 0 5.16× 10−6 1.38× 10−5

0.7 0 0 7.27× 10−6 3.13× 10−5

0.8 0 0 1.52× 10−5 5.01× 10−5

0.9 0 0 3.01× 10−5 9.75× 10−5

1 0 0 4.09× 10−5 1.44× 10−4

5. Numerical examples

In this section, we present the computational results from numerical experiments using the method described in
the previous sections to support our theoretical analysis.

To determine the numerical convergence order using the relation (4.9) we assume eJ(x) = O(2−pJ), and solve for
p accordingly

p = log2
∥eJ−1(x)∥L∞([0,1])

∥eJ(x)∥L∞([0,1])

. (5.1)

We define the L2 and L∞ error norms as

L2error(y) = ||y − yJ ||2,
and

L∞error(y) = ||y − yJ ||∞,

where y and yJ denote the exact and approximate solutions, respectively.

Example 5.1. [5] For our first example, consider the following system of fractional Volterra integro-differential
equations

∗D
1/2
0 y1(x) =

2(
√
x+ 4x3/2

3 )√
π

− x2

2 − 2x3

3 − x4

4 +
∫ x

0
y1(t)dt+

∫ x

0
y2(t)dt,

∗D
1/2
0 y2(x) =

2x3/2(5+6x)
15

√
π

− x2

2 + x4

4 +
∫ x

0
y1(t)dt−

∫ x

0
y2(t)dt,

y1(0) = y2(0) = 0, 0 ≤ x ≤ 1.

The exact solutions of this problem are y1(x) = x+ x2 and y2(x) = x3 + x2.
In Table 1, we report the absolute errors y1 and y2 for J = 1 in this study and those obtained using the method

proposed in [5]. The graph of absolute errors y1 and y2 for J = 1 are given in Figure 1.
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Figure 1. Plots of absolute errors |y(x)− y1J (x)| and |y(x)− y2J (x)| at J = 1, for Example 5.1.

Example 5.2. [5] In this example, for α ∈ (0, 1) we consider the following system of fractional integro-differential
equations

∗D
α
0 y1(x) =

3x2ααΓ(3α)
Γ(1+2α) +

∫ x

0
(x− t)y1(t)dt+

∫ x

0
(x− t)y2(t)dt,

∗D
α
0 y2(x) = − 2x2+3α

2+9α+9α2 − 3x2ααΓ(3α)
Γ(1+2α) +

∫ x

0
(x− t)y1(t)dt−

∫ x

0
(x− t)y2(t)dt,

y1(0) = y2(0) = 0, 0 ≤ x ≤ 1, 0 < α < 1.

The exact solutions of this problem are y1(x) = x3α and y2(x) = −x3α.
The L∞ and L2 errors are obtained in Table 2 for different values of J using the presented method. Also, Table 2

shows the numerical convergence order for different values of α and J , which confirm our theoretical results. In Table
3, we report the absolute errors y1 and y2 for α = 1 at J = 7 in this study and those obtained using the method
proposed in [5]. The graph of approximate solutions y1 and y2 for J = 5 and α = 0.25, 0.5, 0.75, 0.85, and 0.95 are
given in Figure 2.

Example 5.3. As another example, we consider the following system of fractional Volterra integro-differential equa-
tions for α, β ∈ (0, 1)

∗D
α
0 y1(x) = g1(x)− x5α+1

5α+1 − x7β+1

7β+1 − x3

3 − x2

2 +
∫ x

0

(
y1(t) + y2(t)

)
dt,

∗D
β
0 y2(x) = g2(x)− x5α+1

5α+1 + x7β+1

7β+1 + x3

3 − x2

2 − 2x+
∫ x

0

(
y1(t)− y2(t)

)
dt,

y1(0) = 1, y2(0) = −1, 0 ≤ x ≤ 1,

in which

g1(x) =
1

Γ(2− α)
x1−α +

Γ(5α+ 1)

Γ(4α+ 1)
x4α,

g2(x) =
2

Γ(3− β)
x2−β +

Γ(7β + 1)

Γ(6β + 1)
x6β .

The exact solutions of this problem are y1(x) = x+ x5α + 1 and y2(x) = x2 + x7β − 1.
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Table 2. L∞ and L2 errors for y1(x) and y2(x) using presented method for Example 5.2.

J L∞error(y1) p L∞error(y2) p L2error(y1) L2error(y2)

1 1.26× 10−1 − 1.26× 10−1 − 6.10× 10−2 6.33× 10−2

2 7.55× 10−2 0.73 7.55× 10−2 0.73 2.62× 10−2 2.65× 10−2

3 4.49× 10−2 0.74 4.49× 10−2 0.74 1.10× 10−2 1.10× 10−2

α = 0.25 4 2.67× 10−2 0.74 2.67× 10−2 0.74 4.63× 10−3 4.64× 10−3

5 1.58× 10−2 0.74 1.58× 10−2 0.74 1.94× 10−3 1.95× 10−3

6 9.43× 10−3 0.74 9.43× 10−3 0.74 8.19× 10−4 8.19× 10−4

7 5.60× 10−3 0.74 5.60× 10−3 0.74 3.44× 10−4 3.44× 10−4

1 9.28× 10−3 − 9.28× 10−3 − 4.06× 10−3 4.05× 10−3

2 3.28× 10−3 1.49 3.28× 10−3 1.49 1.02× 10−3 1.01× 10−3

3 1.16× 10−3 1.49 1.16× 10−3 1.49 2.60× 10−4 2.56× 10−4

α = 0.5 4 4.11× 10−4 1.5 4.11× 10−4 1.50 6.61× 10−5 6.49× 10−5

5 1.45× 10−4 1.5 1.45× 10−4 1.50 1.67× 10−5 1.64× 10−5

6 5.14× 10−5 1.49 5.14× 10−5 1.50 4.25× 10−6 4.18× 10−6

7 1.81× 10−5 1.5 1.81× 10−5 1.5 1.07× 10−6 1.06× 10−6

1 1.55× 10−3 − 1.55× 10−3 − 7.16× 10−4 6.92× 10−4

2 3.26× 10−4 2.24 3.26× 10−4 2.24 1.12× 10−4 1.07× 10−4

3 6.88× 10−5 2.24 6.88× 10−5 2.24 1.78× 10−5 1.68× 10−5

α = 0.75 4 1.44× 10−5 2.25 1.44× 10−5 2.25 2.87× 10−6 2.70× 10−6

5 3.04× 10−6 2.24 3.04× 10−6 2.24 4.71× 10−7 4.41× 10−7

6 6.39× 10−7 2.24 6.39× 10−7 2.24 7.84× 10−8 7.30× 10−8

7 1.34× 10−7 2.25 1.34× 10−7 2.25 1.32× 10−8 1.24× 10−8

Table 3. The Computational results for Example 5.2.

xi |y1ex − y1app| |y2ex − y2app| |y1ex − y1app|[5] |y2ex − y2app|[5]

0 0 0 0 0
0.1 1.11× 10−12 1.11× 10−12 1.65× 10−14 4.50× 10−14

0.2 1.12× 10−12 1.15× 10−12 8.46× 10−12 2.84× 10−12

0.3 1.11× 10−12 1.42× 10−12 3.25× 10−10 3.11× 10−11

0.4 1.09× 10−12 2.89× 10−12 4.33× 10−9 1.61× 10−10

0.5 1.08× 10−12 7.98× 10−12 3.22× 10−8 5.36× 10−10

0.6 1.08× 10−12 2.17× 10−11 1.66× 10−7 1.27× 10−9

0.7 1.06× 10−12 5.32× 10−11 6.67× 10−7 2.24× 10−9

0.8 9.82× 10−13 1.17× 10−10 2.21× 10−6 2.77× 10−9

0.9 7.53× 10−13 2.36× 10−10 6.40× 10−6 2.03× 10−9

1 2.11× 10−13 4.44× 10−10 1.65× 10−5 1.99× 10−9

The L∞ and L2 errors are obtained in Table 4 for α = 0.8, β = 0.6 and different values of J using the presented
method. Also, Table 4 shows the numerical convergence order for different values of J , which confirm our theoretical
results. The graphs of absolute errors functions |y(x)− y1J (x)| and |y(x)− y2J (x)| for α = 0.8, β = 0.6 and J = 7 are
given in Figure 3.
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Figure 2. The plots of the approximate solutions y1(x) and y2(x) at J = 5, for Example 5.2.

Table 4. L∞ and L2 errors for y1(x) and y2(x) using presented method for Example 5.3.

J L∞error(y1) p L∞error(y2) p L2error(y1) L2error(y2)

1 2.88× 10−3 − 3.38× 10−3 − 1.71× 10−3 1.84× 10−3

2 1.68× 10−4 4.09 2.68× 10−4 9.49 3.04× 10−5 1.24× 10−4

3 1.59× 10−5 3.40 2.11× 10−5 3.66 6.66× 10−6 8.74× 10−6

4 1.69× 10−6 3.23 1.71× 10−6 3.62 6.82× 10−7 6.80× 10−7

5 1.78× 10−7 3.24 1.43× 10−7 3.57 7.83× 10−8 5.91× 10−8

6 1.92× 10−8 3.21 1.25× 10−8 3.51 9.03× 10−9 5.53× 10−9

7 2.67× 10−9 2.84 1.08× 10−9 3.53 1.15× 10−9 2.26× 10−10

Figure 3. Plots of the absolute errors |y(x)− y1J (x)| and |y(x)− y2J (x)| at α = 0.8, β = 0.6 and
J = 7, for Example 5.3.
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Table 5. L∞ error for α = 0.6 and yi(x)(i = 1, 2, 3), using presented method for Example 5.4.

J L∞error(y1) p L∞error(y2) p L∞error(y3) p

1 1.38× 10−3 − 1.41× 10−3 − 8.08× 10−3 −
2 2.64× 10−4 2.39 1.17× 10−4 3.59 6.61× 10−4 3.61
3 5.01× 10−5 2.39 9.70× 10−6 3.59 5.14× 10−5 3.68
4 9.49× 10−6 2.39 8.00× 10−7 3.59 4.00× 10−6 3.68
5 1.80× 10−6 2.39 7.13× 10−8 3.48 3.19× 10−7 3.64
6 3.41× 10−7 2.39 5.97× 10−9 3.57 2.62× 10−8 3.60

Table 6. L∞ error for α = 0.7 and yi(x)(i = 1, 2, 3), using presented method for Example 5.4.

J L∞error(y1) p L∞error(y2) p L∞error(y3) p

1 6.70× 10−4 − 3.43× 10−3 − 1.50× 10−2 −
2 9.71× 10−5 2.78 2.76× 10−4 3.63 1.31× 10−3 3.51
3 1.39× 10−5 2.80 2.24× 10−5 3.62 1.08× 10−4 3.59
4 2.00× 10−6 2.79 1.88× 10−6 3.57 8.80× 10−6 3.61
5 2.87× 10−7 2.79 1.63× 10−7 3.52 7.33× 10−7 3.58
6 4.14× 10−8 2.79 1.40× 10−8 3.54 2.08× 10−7 3.51

Example 5.4. As the last example, for α ∈ (0, 1) we consider the following linear initial value problem

∗D
α
0 y1(x) = g1(x)−

∫ x

0

(
y(t) + y2(t) + y3(t)

)
dt,

∗D
α
0 y2(x) = g2(x)−

∫ x

0

(
y1(t)− y2(t) + y3(t)

)
dt,

∗D
α
0 y3(x) = g3(x)−

∫ x

0

(
y1(t) + y2(t)− y3(t)

)
dt,

y1(0) = y2(0) = y3(0) = 0, 0 ≤ x ≤ 1, 0 < α < 1,

which

g1(x) =
Γ(4α+ 1)

Γ(3α+ 1)
x3α +

x4α+2

16α2 + 12α+ 2
+

x6α+2

36α2 + 18α+ 2
+

x8α+2

64α2 + 24α+ 2
,

g2(x) =
Γ(6α+ 1)

Γ(5α+ 1)
x5α +

x4α+2

16α2 + 12α+ 2
− x6α+2

36α2 + 18α+ 2
+

x8α+2

64α2 + 24α+ 2
,

g3(x) =
Γ(8α+ 1)

Γ(7α+ 1)
x7α +

x4α+2

16α2 + 12α+ 2
+

x6α+2

36α2 + 18α+ 2
− x8α+2

64α2 + 24α+ 2
.

The exact solutions of this problem are y1(x) = x4α, y2(x) = x6α and y3(x) = x8α.
The L∞ errors yi are obtained in Table 5–8 for different values of J using the presented method. Also, Table 5–8

show the numerical convergence order for different values of α and J , which confirm our theoretical results. The graph
of approximate solutions y1, y2 and y3 for J = 5 and α = 0.6, 0.7, 0.8 and 0.9 are given in Figure 4.
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Table 7. L∞ error for α = 0.8 and yi(x)(i = 1, 2, 3), using presented method for Example 5.4.

J L∞error(y1) p L∞error(y2) p L∞error(y3) p

1 7.61× 10−4 − 6.74× 10−3 − 2.45× 10−2 −
2 8.26× 10−5 3.20 5.05× 10−4 3.73 2.10× 10−3 3.54
3 9.00× 10−6 3.19 4.29× 10−5 3.55 1.79× 10−4 3.55
4 9.80× 10−7 3.19 3.80× 10−6 3.49 1.53× 10−5 3.54
5 1.06× 10−7 3.20 3.52× 10−7 3.43 1.36× 10−6 3.49
6 1.16× 10−8 3.19 3.37× 10−8 3.38 1.26× 10−7 3.43

Table 8. L∞ error for α = 0.9 and yi(x)(i = 1, 2, 3), using presented method for Example 5.4.

J L∞error(y1) p L∞error(y2) p L∞error(y3) p

1 2.33× 10−3 − 1.45× 10−2 − 4.46× 10−2 −
2 1.93× 10−4 3.59 1.05× 10−3 3.73 4.41× 10−3 3.33
3 1.59× 10−5 3.60 6.03× 10−5 4.12 3.12× 10−4 3.82
4 1.31× 10−6 3.60 5.24× 10−6 3.52 1.95× 10−5 4
5 1.08× 10−7 3.59 5.06× 10−7 3.37 1.78× 10−6 3.44
6 8.98× 10−9 3.60 5.15× 10−8 3.29 1.74× 10−7 3.53

Figure 4. plots of the approximate solution y1(x), y2(x) and y3(x) at J = 6, for Example 5.4.

6. Conclusion

In this paper, we utilize cubic Hermite spline functions to solve a nonlinear Duffing fractional differential equation
with integral boundary conditions. We use the operational matrix of the Caputo-type fractional derivative and apply
the collocation method to obtain the solution. We demonstrate that our method exhibits good agreement with the
numerical order of convergence when the exact solution lies within H4[0, 1]. However when the exact solution lies
within the fractional Sobolev space W s,2(0, 1), where 1 ≤ s < 4, we observe a reduction in convergence order to
O(2−sJ). Future work could focus on theoretically determining the convergence order of our method in fractional
Sobolev spaces.
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