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Abstract r )

In this article, we solve systems of fractional Volterra integro-differential equations in the sense of the Caputo
fractional derivative, using cubic Hermite spline functions. We first construct the operational matrix for the
fractional derivative of the cubic Hermite spline functions. Then, using this matrix and key properties of these
functions, we transform systems of fractional Volterra integro-differential equations into a system of algebraic
equations, which can be solved numerically to obtain approximate solutions. Numerous examples show that the
results obtained by this method align closely with the results presented by some previous works.
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1. INTRODUCTION

Fractional differential equations (FDEs) and fractional Volterra integro-differential equations (FVIDEs) play im-
portant role in various scientific fields, including physics, chemistry, biology, mechanics, fluid flow, image processing,
engineering, and more. Numerous authors have investigated analytical results concerning the existence and uniqueness
of solutions to FVIDEs (see [3, 15, 16] for examples). Consequently, solving these equations has attracted the attention
of many researchers. Since most FVIDESs systems lack exact analytical solutions, approximate and numerical methods
have become the preferred approach. Some of these numerical approximations are mentioned as follows.

Abdelkawy et al. [2] successfully solved nonlinear variable-order fractional Fredholm integro-differential equations
using a collocation method based on fractional-order Legendre functions. In [6], an operational matrix method based
on triangular functions was utilized to solve a system of fractional Integro-differential equations. The authors in [22]
solved a system of linear fractional integro-differential equations using least squares method and shifted Chebyshev
polynomials, while Shahmorad et al. [34] employed a geometric approach for solving nonlinear fractional integro-
differential equations. Haydari et al. [16] utilized a wavelet collocation method for solving systems of nonlinear
singular fractional Volterra integro-differential equations based on Chebyshev polynomials, and in [36], two ideas
based on discretization of the fractional differential operator and integral form of the FDEs were used to develop
higher order numerical techniques for solving FDEs. In addition, optimal homotopya symptotic method was employed
to solve a system of fractional order Volterra Integro-differentiale quations in [5]. Furthermore, Khader et al. [20]
solved system of linear and nonlinear fractional integro-differential equations of Volterra type using the Chebyshev
pseudo-spectral method. For further research works on this problem, we recommend interested readers to refer to
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[1,4,7,9,10, 18, 26, 30-32, 35-37]. A comprehensive history of fractional differential operators and their applications
can be found in [11, 14, 19, 21, 24, 27-29], with [19] and [29] being two excellent references on FDEs.
In this paper, we would like to solve a fractional initial value problem (FIVP) in the form

{*Dglyz(x) = fi(xayl(x)’ 7yn(m)) + fow ki(xatvyl(t)’ ,yn(t))dtv 0 < Q; < ]-a 0 <z S ]-7 (11)

y,(O) = bi, 1= 0, 1, ey N
where *Dj* denotes the Caputo fractional derivative of order «y, b; are real constants, and f;, k; are continuous
functions.

A common strategy, to solve fractional equations, the solution is first written as a linear combination of basis
functions. Then, by using a truncated series of basis functions and applying operational matrices, the problem is
reduced to a system of linear or nonlinear algebraic equations that can be easily solved.

In this article, we first construct the operational matrix for fractional derivative of cubic Hermit spline functions
(CHSFs). Next, we express the unknown functions as a linear combination of CHSFs with unknown coefficients.
Finally, using the operational matrix for derivative and the collocation method, we reduce the problem (1.1) to a
system of algebraic equations, which can be solved to find the unknown coefficients.

This paper is organized into five sections. In section 2 we give some preliminaries and definitions needed for our
work. In section 3, the numerical method is presented. A convergence analysis of the method is discussed in section
4, and we show that if the unknown function lies in H*(£2), where Q is the domain of the problem, then the order
of convergence will be O(27%7). Some numerical examples are presented to show the efficiency and validity of the
method in section 5. We finish the paper with a conclusion and suggest a future work.

2. PRELIMINARIES AND NOTATIONS

2.1. The fractional derivative in the Caputo sense and some other definitions. In this section, we recall the
basic concepts and definitions of fractional calculus that are most frequently used in the following sections.

Fractional derivatives and integrals of order o > 0 have various definitions. The two most important ones are the
Riemann-Liouville and Caputo definitions [19, 29], which we describe below.

Definition 2.1. [19] Let « be a positive real number. The Riemann-Liouville fractional integral operator of order «,
denoted by J¢, is defined on the interval [a, b] and acts on functions in L![a,b] as

T () = ﬁ /I(J: — ()t 0 <@ <.

Specifically, when a = 0, we define J? f(z) = f(z).
Definition 2.2. [19] Let o > 0 and m = [«]. Then the Caputo fractional derivative (CFD) of order « is defined as
D f(x) = J D" f(x),
when D™ f € L'[a,b]. Using Definition 2.1, it is then written in the following form

1 X

Def(r) = =——— —tyme=t fm(yqt.

DE@) = s | @m0

In special cases, for the Caputo derivative when 8 > 0, we have
D3C =0, (Cis constant),

De P = {0 forB=1{0,1,2,....m — 1},

Jéfiﬁg)xﬁ_“, forBeNand f>=m or 8¢ Nand 8 >m—1.

It is worth noting that the ceiling function [« is the smallest integer greater than or equal to o and the floor function
|r] is the largest integer less than or equal to a.
Recall that the operator DY is linear, i.e.,

D (Af(@) + Bg(a)) = A D f(x) + B .Dig(a),
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where A and B are arbitrary constants.

Definition 2.3. For an interval x € [a,b], let p > 1. The set of functions

b
{f|f: [0, ] —><c:/ F@)P < oo},
forms a normed vector space over the field C, denoted by LP[a, b].

Definition 2.4. For each f € LP[a,b], the norms of the function f are defined as follows:

b 1
Hpr==(L/1|f(prdx)5,

| flloe = (es5 suprepap|f()]) -
Definition 2.5. Let Q be an open subset of R. Then the space H*(2) defined by
H(Q) = {f € L*(Q); ) € L*(Q),Ya, 0 < o < s}
is called the Sobolev space of order s [23]. The norm for this space is defined by

1
[ flls.0 = (Z ||f(a)||%2(sz)>
a=0

3
For the non-integer value s € (0,1), the fractional Sobolev space is defined as [§]

W52(a,b) = {f € L*(a,b) : J@) =) € L*([a,b] x [a,b])},

eyt
with the corresponding norm
b b b 2 3
flx) — fly

|WWMWV¢/JWWW+/ ';lwgﬁmw
If s=n+pu>1wheren € N and p € (0,1), then the fractional Sobolev space is defined as

W*?(a,b) = {f € H"(a,b) : D" f € W"?(a,b)}.
2.2. Cubic Hermite spline functions on [0,1]. A cubic Hermite spline (or cubic Hermite interpolator) is a spline

function such that each piece is a third-degree polynomial specified in Hermite form. In other words, cubic Hermite
spline functions are defined by [12, 13, 25]

(r+1)%(=22x+1), xe[-1,0],

d1(z) =< (1 —2)%(2z + 1), x € [0,1], (2.1)
0, o.w.,
(r+1)%z, x€[-1,0],

p2(z) =< (1 —2)%2, x€]0,1], (2.2)

0, o.w.,

these functions satisfy the following interpolation properties.

d1(k) = ¢o(k) = bk, d1(k) = ¢2(k) =0, (k € Z),
where dy , is the Kronecker delta. The integer transformations of ¢; and ¢, form a basis for the space of C*-continuous
piecewise cubic functions on R that interpolate function values and their first derivatives at k € Z. The dilation and
translation parameters are denoted by 27 and k, respectively where j, k € Z. For | = 1,2, we can express any function
in this space as a linear combination of ¢;(2/x — k).
an
BE
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Suppose

Bji(z) = supp[¢{’k(x)] = clos{x : (b{’k(m) # O},
with simple calculations, it can be shown that
Bale) =[5
We define the index set as follows
S;={BjxN(0,1) #0}, j,keZ
It is evident that for j € Z, S; = {0,1,2,...,27}.
To define cubic Hermite functions on [0, 1], we set

o (@) = o (@) xo (@), JEE ke I=12

}, for j,k € Z.

2.3. Function approximation. Let ®;(.) be a 2(27 + 1)-dimensional vector:

G0 40 32y 420 ] ,
@;() = [01°0), 03°C), 01 (), 37 ()] jez (23
Due to the interpolatory nature of the functions ¢; and ¢9, j = J for a fixed, it is possible to approximate a function
f € H*[0,1] using cubic Hermite functions as
2J

F@) =3 (erm 617 (@) + o 0" (2)) = CT @y (a), (2.4)

k=0
where

K K
—J gl J
Cl,K:f(27)7 CQ,K:2 f(27)7 K:O71a"'72a
and C is a N-dimensional vector defined as
T
C = |c1,0, €2,0, - C1,27, CQ,QJ] )

where N = 2(27 +1).

2.4. Fractional Derivative Operational Matrix. The Caputo fractional derivative (CFD) of order oy, (0 < ; <
1,i=1,2,...,n) for functions ¢;"*(.),k € S;(r = 1,2) can be approximated as

Dol (x) =Dyt (27x —0)
= 530 {860 (k= 0)01(272 = k) + 27 D(.D§ 6, (2)) |,y _, 622" — )
where D denotes the classical first derivative and ¢ = 0,1,...,27. Using the relation (2.5) we can find the CFD of
order «; for the vector function ®; in form
Dyi®y(r) 2Dy, Py(x),i=1,2,..,n, (2.6)

where D, (i = 1,2,...,n) are N x N operational matrices of fractional derivative. For the special case J =1, i = 2
and a1 = i, a9 = %, the matrices D,, and D,, are as follows:

(2.5)

(&)
ENE
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7 1 1 1
0 o =221 16 214 1 —608 24 4640 1 —2640 24 +3168
TIEE TG T rd) [ZAE)
1 1 1
0 0 —4 24 10 24 1 —736 24 4872 1 —3344 24 +3982
7 r(ﬁ) 211(3) 231 ) 231 r3)
1 1 1
0 0 96 24 —16 214 1 5122 24 —640 1 2816 24 +3168
D = [ F(%) 7 (%) 7 () 77 (%)
@1 — 1 1 1 1 )
0 o 3224 80 214 1 —1408 24 +1664 _1 —4928 24 +5984
231 7(3) 21 1(3) 231 F(ﬁ) 231 r(%)
96 24 —16 24
0 0 0 0 ey ey
1 1
0 0 0 0 2 23 8029
231 F(%) 21 F(%)
0 0 —8V2 8v2 96—72V2 80—5612
5/ VT 5/ ™
0 0 —2V2 2v2 124882 34-24/2
157 NZ3 157 NZ3
0 0 82 —8v/2  —32(3-2V2) 16(4v/2-5)
57 N3 15/ N3
’Da2 = 0 0 8v2 8v2 32(5v/2-17) —16(30v/2—45)
157 NZ3 157 157
o6 27 16 21
0 O 0 0 ey e
32 21 80 21
00 0 0 ey ey

3. METHODOLOGY DESCRIPTION

In this section, we solve the FIVP (1.1) using cubic Hermite spline functions. For the unknown functions y; (i =
1,2,...,n) in (1.1), we use (2.4) to obtain the approximation:
2J

i) =y, () = 30 {VEs 014 () + Vi 03 ) } = Y7 85 (0), (3.1)
k=0

where Y?(i = 1,2,..,n) are unknown vectors defined by:
Y'= [le,Ov Y21,0v Yll,la Y21,17 s »Y1Z,2Ja 21,2J} :
Using the operational matrix from (2.6), we approximate ,D{ y;(z) as
a; aivit i
Dyi(x) ~  Dy'Y* @5(x) =Y Dy, ®y(x). (3.2)
Substituting (3.1) and (3.2) into Eq. (1.1), for i =1,2,....,n and 0 < a; < 1 we get

YiTDai@J(x)2fi(x,YlT(I’J(x),...,Y"T@J(I))—|—/ ki(z, 6, Y ® (1), ..., Y™ (1)) dt, 33)
O .

O0<ax<l,
also by replacing (3.1) in the initial condition of problem (1.1), we obtain
YU0,0)=b;, i=1,2,...,n. (3.4)
By collocating Eq. (3.3) at the N — 1 equally spaced nodes z; € [0, 1], for j =1,2,..., N — 1, we have

YiTDa,;bJ(xj)gfi(a:j,le@J(xj),...,Y"Téj(xj))+/ ki (2,6, Y7 @ (1), ..., Y ®5(1))dt, 35)
O .

j=1,2,3,...,N—1.
[c[m]
(0] €]
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The integrals in Eq. (3.5) are evaluated using a suitable Newton-Cotes method, thus, we obtain:
iT 1T TLT
Y'Y Do, ®s(zj) = fiz;, Y ®y(x)),....Y" ®;(z;))

i , , (3.6)
+ 3 weki(z, YT B(te),... YT yte))dt, j=1,2,3,...,N—1,
£=0
where wy,¢ = 0,1,...,m; are the Newton-Cotes quadrature weights. Combining (3.6) and (3.4) yields a system of
n x N algebraic equations with n x N unknowns, which is solved for the unknown vectors Y. Thus, the solutions y;
o (1.1) are obtained.
We recall that the matrix method solves the algebraic systems.

4. CONVERGENCE ANALYSIS
Theorem 4.1. [12, 13] Let f € H*[0,1], and f; be the projection of f on the space V;. Then we have
inf || f(2) = fr(@)ll 20,1 <27 lla0,1) = O™, (4.1)

Definition 4.2. Let F = [f1, f2, ..., fa]T € C([0,1] x R",R") and K = [ki, ko, ..., k,]T € C([0,1]? x R",R"). Assume
these functions satisfy the following Lipschitz conditions for some real constants L,, L, > 0

|F(x,21) — F(z,22)|l2 < Lpllz1 — 2|2, [|K(2,t,21) — K(x,t, 22) |2 < Lg||z1 — 22]|2, 21, 22 € R". (4.2)

Let Y = [y1,v2, -, Yn]T € C1(R™) be the solution of the nonlinear fractional Volterra integro-differential system
(1.1). We rewrite this system in the following form:

{*DgY()_F(xY o))+ [T K(z,t,Y()dt, 0<a<l, 0<z<l, 43)
Y(0) = Yo,
where a = [a1, g, ..., @] and Yy = [b1, ba, ..., by).
Let Y and Y} denote the exact and approximate solutions of the FIVP (4.3), respectively. Then we have
{*DgYJ( ) = F(a, Yy (@) + [T K (2,6, Ys(t)dt + ry(z), 0<z<1, )
Y;(0) = Yo,

where r () is the residual term of the approximation. In the following theorem we find an upper bound for r;(x).

Theorem 4.3. Let Y(x) € H*[0,1] and Y;(z) denote the exact and approximate solutions of the FIVP (4.3), re-
spectively. Assume ,D§Y (z) € H*0,1], with F and K Lipschitz continuous in their second and third arguments,
respectively.” Then we have

xT
||TJ(£L')H2 = ||*D(()XYJ(CU) — F(m,YJ(LL')) — / K(Qﬁ,t,YJ(t))dtHz = 0(2_4J). (45)
0
Proof. From the definition of finction r;(z), we can conclude that:

[ry(@)ll2 = ||.D§Ys(x) — F(z,Y;(x)) — /0z K(a:,t,YJ(t))dtH2

1l {*Dgy](x) DSV (a) + Fz Y (2)) + /0 xK(m,t,Y(t))dt}
— {F(m,YJ(x)) -l—/owK(x,t, YJ(t))dt} ll2

<AILDEY () = . DgY(@)ll2 + |IF (2, Y (2)) = F(z, Ys(2))ll2}

+ {/0“” ||K (z,t,Y(t) — /01 K(:v,t,YJ(t))|2dt} .
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Applying (4.1) for the first relation and (4.2) for the last two relations, we have
1L.DgY (x) — .DgYs(x )Hz =0(2™"), (4.6)
[F (2, Y (2)) = F(2, V() ||, < Ly [V (2) = Ys(@)ll,
HK(m,t,Y(m)) K(x £, Yy (x )H <Ly Y (2) = Yi(2)],-

Using (4.1) for the last two relations, we get

||F(z, Y () = F(z,Y;(2))]], = 027", (4.7)
|| K (2,t,Y (2)) = K (2,t,Y,(x)) ||, = 02~*). (4.8)
Combining (4.6), (4.7), and (4.8) completes the proof. O

Theorem 4.4. Let Y(x) € H*0,1] and Y;(x) are the ezact and approzimate solution of FIVP (4.3), respectively,
and the functions F, K are Lipschitz continuous functions with respect to second and third variable. Then, we have

es(z) = [IY (z) = Ys(2)], = O27"). (4.9)

Proof. Applying the Riemann-Liouville fractional integral on both sides of FDEs in (4.3), (4.4), and the related initial
values, we get

Y(z) =Y(0)+ ﬁ /Ox(:c —2)*7'F(2,Y(2))dz + ﬁ /Ox(x —z)t /0 K(z,t,Y(t))dtdz, (4.10)

and

Yy(z) = Y(0) + ﬁ /O “@ - ) (5 V() dz

1 x z 1 xr
+7/ x—z("_l/ K(z,t,Y;(t dtdz——/ z—2)" " tes(2)dz.
o | e [ KGayiw)da — ms [ =2 e
Subtrcting Eq. (4.11) from (4.10) we get

1Y (2) ~ ¥ ()]s = Iéw/ﬂm—w(ﬂzywn—nanu»wz

/ / 2 — 20 YK (21, Y () - K(zt, YJ(t)))dtdz

—@/0 (x —2)* " rs(2)dz )
1 ! a—1
< sy | o= =1 = (1@ Y ) = Fla Yo )l

(4.11)

/‘foty (6) ~ K (., Yo ) adt + 1))

(ElIFG, Y () = FGa Yol + Lll K (o, Y (8) = K, Yy O] ]2 + s (@)]]2).

- F(a +1)
and so
1
Y(z)-Y. < —(L,||F(z,Y —F(z,Y.
() = Yol < gy (BollF G Y (@)~ Fe Yol )
+ Lol K (2,8, Y (1)) — K(2,t,Y;(1))]]2 + ||7’J($)||2>o
Applying the relations (4.7) and (4.8) in (4.12) implies
es(x) = [|Y(2) = Ys(@)ll2 = O27"),
which completes the proof. O

(=)=
E)NE
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TABLE 1. The Computational results for Example 5.1.

T |ylex - ylapp| |y2613 - y2app| |ylez - ylapp| [5] |y26x - y2app|[5]

0 0 0 0 0

0.1 0 0 5.23 x 1077 1.40 x 10~7
0.2 0 0 2.39 x 106 6.23 x 1077
0.3 0 0 4.69 x 10~ 9.53 x 10~7
0.4 0 0 6.01 x 106 7.15 x 1078
0.5 0 0 5.76 x 1076 4.25 x 1076
0.6 0 0 5.16 x 10~ 1.38 x 10~°
0.7 0 0 7.27 x 106 3.13 x 10°5
0.8 0 0 1.52 x 107° 5.01 x 10~5
0.9 0 0 3.01 x 10~° 9.75 x 10~°
1 0 0 4.09 x 1075 1.44 x 10~4

5. NUMERICAL EXAMPLES

In this section, we present the computational results from numerical experiments using the method described in
the previous sections to support our theoretical analysis.
To determine the numerical convergence order using the relation (4.9) we assume e;(x) = O(27?7), and solve for
p accordingly
lles—1(2)l[ (0,1
2
||6J($)HL°<:([0,1])

We define the Lo and L., error norms as

p = log (5.1)

Laerror(y) = [ly — ysllz,
and
Loserror(y) = |ly — yullo,
where y and y; denote the exact and approximate solutions, respectively.

Example 5.1. [5] For our first example, consider the following system of fractional Volterra integro-differential
equations
413/2

D Py(w) = 2 2w [y ()t [ ya(t)d,

1/2 23/2 T 2 4 T T

y1(0) =32(0) =0, 0<z<1.

The exact solutions of this problem are y;(x) = o + 22 and ya(x) = 23 + 2.
In Table 1, we report the absolute errors y; and gy for J = 1 in this study and those obtained using the method
proposed in [5]. The graph of absolute errors y; and ys for J = 1 are given in Figure 1.
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¥l ¥
2x108

1% 107284
1. %1072

“1x107%
-1 % 10724

-2x107®

-2 % 10.!3_

FIGURE 1. Plots of absolute errors |y(x) — y1,(z)| and |y(z) — y2, (z)| at J = 1, for Example 5.1.

Example 5.2. [5] In this example, for o € (0,1) we consider the following system of fractional integro-differential
equations

12(104 o T
Dy () = B2 4 (50—t (t)dt + [ (z — t)ya(t)dt,

og2t3e 3z2*al'(3a)

*Dng(x) = T 2¥9a+9az (1+2a + fo xr — t yl )dt - foz(x - t)yZ(t)dtv

y1(0) =92(0)=0, 0<z <1, 0<a<l

The exact solutions of this problem are y;(x) = 3% and yo(x) = —a3°.

The L, and Ly errors are obtained in Table 2 for different values of J using the presented method. Also, Table 2
shows the numerical convergence order for different values of a and J, which confirm our theoretical results. In Table
3, we report the absolute errors y; and y» for « = 1 at J = 7 in this study and those obtained using the method
proposed in [5]. The graph of approximate solutions y; and ys for J = 5 and a = 0.25,0.5,0.75,0.85, and 0.95 are
given in Figure 2.

Example 5.3. As another example, we consider the following system of fractional Volterra integro-differential equa-
tions for o, 8 € (0,1)

Doy (@) =g1(@) - 57 %7 -5 - % S [T (i () + (1)) dt,

5a+1 78+1 3

2 T
*Dgyz(:v) =9@) -t t5 T 2o+ Iy (ya(t) — ya(t))dt,

y1(0) = 1,92(0) = =1, 0<z <1,

in which o r(5a +1) o
g1(x) = mx TTaarD"
(&) = 2 (78 + 1)x66

g2 r3-5) ,8) r66+1)

The exact solutions of this problem are y;(x) = = + 2°* + 1 and y»(z) = 22 + 27 — 1.

(=)=
E)NE
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TABLE 2. Lo, and Ly errors for y;(x) and ys(z) using presented method for Example 5.2.

J Leerror(y1) p  Lecerror(ys) p  Leerror(yy) Loerror(ys)

1 126x107!  — 1.26x107' — 6.10x1072 6.33 x 1072

2 755x1072 0.73 755x1072 0.73 2.62x 1072 2.65x 1072

3 449x1072 0.74 449x1072 0.74 1.10x 1072 1.10 x 1072

a=025 4 267x1072 074 267x1072 0.74 4.63x1073 4.64x 1073

5 1.58x1072 0.74 158x1072 0.74 1.94x1072 1.95x 1073

6 943x107% 0.74 943x1073 0.74 819x10~* 8.19x 10~

7 560x1073 074 560x107% 074 3.44x10~* 3.44x10~*

1 928x1072 — 928x107% — 4.06x1073 4.05x 1073

2 3.28x1073 149 328x107% 149 1.02x10"% 1.01x1073

3 116x1073% 149 1.16x1073 149 260x10~* 2.56 x 10~*

a=05 4 411x107* 15 411x107* 150 6.61x10"° 6.49x10°°

5 145x107% 1.5 145x10™* 150 1.67x107° 1.64x107°

6 514x107° 149 5.14x1075 1.50 4.25x 1076 4.18 x 10~

7 181x107® 15 1.81x107® 1.5 1.07x107% 1.06x 1076

1 155%x1072 — 155x107% — 7.16x107% 6.92x107*

2 3.26x107% 224 326x107* 224 1.12x10"* 1.07x107%

3 6.88x107° 224 6.83x107° 224 1.78 x107° 1.68 x 10~°

a=075 4 144x107° 225 144x107° 225 287x10°% 2.70x 106

5 3.04x107% 224 3.04x1076 224 471 x1077 4.41x1077

6 6.39x1077 224 6.39x1077 224 7.84x10°8 7.30x 108

7 134x1077 225 134x1077 225 1.32x10"% 1.24x10°8

TABLE 3. The Computational results for Example 5.2.
Xy |ylex - ylapp| ‘yQSI - y2app| |ylez - ylapp‘ [5] |y2ex - y2app| [5}
0 0 0 0 0

0.1 1.11x107*2 1.11 x10712 1.65 x 1014 450 x 10~
0.2 1.12x107'2 1.15x107*2 846 x 10712 2.84 x 10712
0.3 1.11x107'2 142x107*2 3.25x10°1° 3.11 x 107!
0.4 1.09x 10712 2.89 x 10~12 4.33 x 1079 1.61 x 10~10
0.5 1.08x107'2 7.98 x 10712 3.22 x 1078 5.36 x 10710
0.6 1.08x 1072 217 x 10~ 1.66 x 10~7 1.27 x 1079
0.7 1.06 x 10712 5.32 x 10~ 6.67 x 1077 2.24 x 1079
0.8 9.82x1071 1.17x 10710 2.21 x 107 2.77 x 1079
0.9 7.53x10713 2.36x 10710 6.40 x 106 2.03 x 107°
1 211x1071% 444 x 10710 1.65 x 10~° 1.99 x 1079

989

The Lo, and Ly errors are obtained in Table 4 for a = 0.8, = 0.6 and different values of J using the presented
method. Also, Table 4 shows the numerical convergence order for different values of J, which confirm our theoretical
results. The graphs of absolute errors functions |y(x) — y1,(z)] and |y(z) — y2, (x)| for & = 0.8, = 0.6 and J = 7 are

given in Figure 3.
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FIGURE 2. The plots of the approximate solutions vy (x) and yo(z) at J = 5, for Example 5.2.

TABLE 4. Lo, and Ly errors for y;(x) and yo(z) using presented method for Example 5.3.

J Leerror(yi1) p  Lecerror(ya) p  Leerror(yr) Leerror(ysz)
1 288x107% — 338x107% — 171x1073 1.84x10°3
2 1.68x107* 4.09 268x107* 949 3.04x1075 124 x10~*
3 159x107° 3.40 211x107° 366 6.66x 106 874 x 10
4 169x107% 323 1.71x10"% 3.62 6.82x10"7 6.80x 107
5 1.78x 1077 324 143x1077 3.57 7.83x10% 5.91x10°%
6 1.92x108% 321 125x10~% 351 9.03x107? 5.53x107°
7 267x1072% 2.84 1.08x107? 3.53 1.15x107° 2.26 x 1010
¥
2.5% 107

2% 107

15x10°7

1.% 107

5. x 107104

0.2 04

0.6 0.8

FIGURE 3. Plots of the absolute errors |y(z) — y1,(z)| and |y(z) — y2,(x)] at « = 0.8, = 0.6 and

J =17, for Example 5.3.
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TABLE 5. L error for a = 0.6 and y;(x)(i = 1,2, 3), using presented method for Example 5.4.

J Leerror(y1) p  Lecerror(ya) p  Lecerror(ys) p

1 138x107% — 141x107% — 808x107% —

2 264x107* 239 117x107* 359 6.61x107* 3.61
3 501x107% 239 970x107% 359 5.14x107° 3.68
4 949x107% 239 800x 1077 3.59 4.00x107% 3.68
5 1.80x1076 239 7.13x107% 348 3.19x1077 3.64
6 3.41x1077 239 597x107° 357 2.62x107% 3.60

TABLE 6. L error for a = 0.7 and y;(x)(i = 1,2, 3),

using presented method for Example 5.4.

J Leerror(y1) p  Leerror(ya) p  Lecerror(ys) p

1 670x107* — 343x10% — 150x10°2%2 —

2 9.71x107% 278 276x107* 363 131x10"2% 3.51
3 1.39x107° 2.80 224x107° 3.62 1.08x10~* 3.59
4 200x107% 279 1.88x107% 3.57 880x1076 3.61
5 287x1077 279 1.63x1077 352 7.33x1077 3.58
6 4.14x107% 279 140x108 354 208x10~7 3.51

Example 5.4. As the last example, for a € (0,1) we consider the following linear initial value problem

which

The exact solutions of this problem are y; () = 2, yo(2) = 2% and y3(x) = =

Dy () = g1(x) =[5 (yct) + y2(t) + ys(t))dt,
Diya() = ga(@) = [y (y1(2) — v2(t) +ys(t))dt,

Diys(z) = gs(@) — [3 (11 (t) + ya(t) — ys(t))dt,

w6(x+2 w8(x+2

16a2+120¢+2+36a2+18a+2+64a2+24a+2’

x6o¢+2 x80¢+2

1602 + 12012 3602+ 180 +2  6da2 + 240+ 2

x6o¢+2 x8o¢+2

11(0) =y2(0) =y3(0) =0, 0<z<1, 0<a<l,
Tda+1) 4, o2
9@ = FEa)”
_T(6a+1) 5, plat?
%) = Frat1)”
- TBa+1) 4, got2
9) = Tat D"

1602 1120 +2 3602+ 18a+2 6da? 1 24a+ 2

8o

The L, errors y; are obtained in Table 5-8 for different values of J using the presented method. Also, Table 5-8
show the numerical convergence order for different values of o and J, which confirm our theoretical results. The graph
of approximate solutions y;, y2 and y3 for J =5 and a = 0.6,0.7,0.8 and 0.9 are given in Figure 4.
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TABLE 7. Ly error for a = 0.8 and y;(x)(i = 1,2, 3), using presented method for Example 5.4.

J Leerror(y1) p  Lecerror(ya) p  Lecerror(ys) p

761 x107* —  6.74x107% — 245x 1072 —

826 x 107> 320 5.05x107* 373 210x107% 3.54
9.00x 1076 3.19 4.29x107% 355 1.79x10™* 355
0.80 x 1077 3.19 3.80x107% 349 1.53x107° 3.54
1.06 x 1077 3.20 352x1077 3.43 1.36x107% 3.49
1.16 x 1078 3.19 337x107% 3.38 1.26x10"7 3.43

S Uk W N =

TABLE 8. L error for o« = 0.9 and y;(z)(i = 1,2, 3), using presented method for Example 5.4.

J Leerror(y1) p  Leerror(ya) p  Lecerror(ys) p

233x107% - 145x1072 — 446x107%2 —
1.93x107* 359 1.05x107% 3.73 441x10~3% 3.33
1.59 x107° 3.60 6.03x107° 4.12 3.12x10~* 3.82
1.31x107% 3.60 524x107% 352 195x107° 4
1.08 x 1077 3.59 5.06x 1077 3.37 1.78x107% 3.44
898 x 1072 3.60 5.15x107% 3.29 1.74x107 3.53

S U W N =

0.31

0.8 0.81

0.6 0.6 0.61

0.41 0.41 0.44
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FIGURE 4. plots of the approximate solution yi(z),y2(z) and ys(x) at J = 6, for Example 5.4.

6. CONCLUSION

In this paper, we utilize cubic Hermite spline functions to solve a nonlinear Duffing fractional differential equation
with integral boundary conditions. We use the operational matrix of the Caputo-type fractional derivative and apply
the collocation method to obtain the solution. We demonstrate that our method exhibits good agreement with the
numerical order of convergence when the exact solution lies within H*[0,1]. However when the exact solution lies
within the fractional Sobolev space W*2(0,1), where 1 < s < 4, we observe a reduction in convergence order to
O(27#7). Future work could focus on theoretically determining the convergence order of our method in fractional
Sobolev spaces.
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