- [1] N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdVmKdV equations with solitary wave solutions, Partial Diff. Eq. Appl. Math., 9 (2024), 100599.
- [2] M. U. Alibubin, J. Sulaiman, F. A. Muhiddin, A. Sunarto, and G. B. Ekal, A Caputo-based nonlocal arithmeticmean discretization for solving nonlinear time-fractional diffusion equation using half-sweep KSOR, Edelweiss Appl. Sci. Tech., 9(1) (2025), 896-911.
- [3] M. Bakhshi, M. Asghari Larimi, and M. Asghari Larimi, Three-dimensional differential transform method for solving nonlinear three-dimensional volterra integral equations, J. Math. Comput. Sci., 4(2) (2012), 246-256.
- [4] J. Biazar and M. Eslami, Modified HPM for solving systems of Volterra integral equations of the second kind, J. King Saud Univ., 23 (2011), 35-39.
- [5] F. Bouchaala, M. Y. Ali, and A. Farid, Estimation of compressional seismic wave attenuation of carbonate rocks in Abu Dhabi, United Arab Emirates. Comptes Rendus. Geosci., 346(7-8) (2014), 169-178.
- [6] F. Bouchaala, M. Y. Ali, and J. Matsushima, Attenuation modes from vertical seismic profiling and sonic waveform in a carbonate reservoir, Abu Dhabi, United Arab Emirates, Geophys. Prospecting, 64 (2016), 1030-1047.
- [7] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods, SIAM J. Numer. Anal., 27 (1990), 978-1000.
- [8] C. Canuto, A. Quarteroni, M. Y. Hussaini, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, 1988.
- [9] C. Cattani and A. Kudreyko, Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind, Appl. Math. Comput., 12(166) (2010), 4164-4171.
- [10] R. Y. Chang and M. L. Wang, Shifted Legendre direct method for variational problems, J. Optim. Theory. Appl., 39 (1983), 299-307.
- [11] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Partial Diff. Eq J., 26 (2010), 448-479.
- [12] M. Dehghan, J. Manafian, and A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method, Z. Naturforsch, 65(a) (2010), 935-949.
- [13] H. Du and M. Cui, A method of solving nonlinear mixed Volterra-Fredholm integral equation, Appl. Math. Sci., 1 (2007), 2505-2516.
- [14] N. Ebrahimi and J. Rashidinia, Collocation method for linear and nonlinear Fredholm and Volterra integral equations, Appl. Math. Comput., 270 (2015), 156-164.
- [15] A.M.A. El-Sayed, H.H.G. Hashem, and E.A.A. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33(1) (2014), 95-109.
- [16] F. Erdogan, A second order numerical method for singularly perturbed Volterra integro-differential equations with delay, Int. J. Math. Comput. Eng., 2(1) (2024), 85-96.
- [17] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [18] C. Hwang and M. Y. Chen, A direct approach using the shifted Legendre series expansion for near optimum control of linear time-varying systems with multiple state and control delays, Int. J. Control, 43 (1986), 1673-1692.
- [19] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, 1989.
- [20] M. Lakestani and J. Manafian, Analytical treatment of nonlinear conformable timefractional Boussinesq equations by three integration methods, Opt. Quant. Elec., 50(4) (2018), 1-31.
- [21] M. Lakestani and J. Manafian, Analytical treatments of the space-time fractional coupled nonlinear Schr¨odinger equations, Opt. Quant. Elec., 50(396) (2018), 1-33.
- [22] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Meth. Diff. Equ., 10(2) (2022), 445-460.
- [23] M. Lakestani, B. N. Saray, and M. Dehghan, Numerical solution for the weakly singular Fredholm integrodifferential equations using Legendre multi-wavelets, J. Comput. Appl. Math., 235 (2011), 3291-3303.
- [24] U. Lepik and E. Tamme, Solution of nonlinear Fredholm integral equations via the Haar wavelet method, Proc. Estonian Acad. Sci. Phys. Math., 56 (2007), 11-27.
- [25] P. Linz, Analytical and numerical methods for Volterra equations, SIAM Studiesin Applied Mathematics, 1985.
- [26] Y. Liu, Application of Legendre Polynomials in Solving Volterra Integral Equations of the Second Kind, Appl. Math., 3(5) (2013), 157-159.
- [27] K. Maleknejad and M. T. Kajani, Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions, Appl. Math. Comput., 145 (2003), 623-629.
- [28] K. Maleknejad and S. Sohrabi, Legendre polynomial solution of nonlinear volterra-fredholm integarl equations, IUST Int. J. Eng. Sci., 19 (2008), 49-52.
- [29] J. Manafian, Solving the integro-differential equations using the modified Laplace Adomian decomposition method, J. Math. Ext., 6 (2012), 1-15.
- [30] J. Manafian and P. Bolghar, Numerical solutions of nonlinear three-dimensional Volterra integral-differential equations with 3D-block-pulse functions, Math. Meth. Appl. Sci. J., 41(12) (2018), 4867-4876.
- [31] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Diff. Equ. Appl. Math., 9 (2024), 100600.
- [32] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 150 (2020), 103598.
- [33] J. Manafian and M. Lakestani, Application of tan(ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127(4) (2016), 2040-2054.
- [34] J. Manafian, and M. Lakestani, Optical soliton solutions for the Gerdjikov-Ivanov model via tan(ϕ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [35] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(ϕ(ξ))expansion method, Optik, 127(14) (2016), 5543-5551.
- [36] J. Manafian and M. Lakestani, A new analytical approach to solve some the fractional-order partial differential equations, Indian J. Phys., 91 (2017), 243-258. 168-175.
- [37] B. N. Mandal and S. Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput., 190(2)(2007), 1707-1716.
- [38] S. Mashayekhi, M. Razzaghi, and O. Tripak, Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials, Sci. World J., 2014 (2014), 1-8.
- [39] F. Mirzaee and E. Hadadiyan, A computational method for nonlinear mixed Volterra-Fredholm integral equations, Caspian J. Math. Sci., 2 (2013), 113-123.
- [40] F. Mirzaee, E. Hadadiyan, and S. Bimesl, Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via three-dimensional block-pulse functions, Appl. Math. Comput., 237 (2014),
- [41] D. S. Mohamed and R. A. Taher, Comparison of Chebyshev and Legendre polynomials methods for solving two-dimensional Volterra-Fredholm integral equations, J. Egyptian Math. Soc., 25 (2017), 302-307.
- [42] S. R. Moosavi, N. Taghizadeh, and J. Manafian, Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method, Comput. Meth. Diff. Equ., 8(3) 2020, 537-552.
- [43] S. Nemati, P. M. Lima, and Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math., 242 (2013), 53-69.
- [44] S. Nemati and Y. Ordokhani, Numerical solution of two-dimensional nonlinear Volterra integral equations by the Legendre polynomials, J. Sci. Tarbiat Moallem University, 11 (2012), 1-16.
- [45] A. Rivaz, S. Jahanara, and F. Yousefi, Two-dimensional Chebyshev Polynomials for Solving Two-dimensional Integro-Differential Equations, C¸ankaya University J.Sci. Eng., 12 (2015), 001-011.
- [46] P. k. Sahu and S. S. Ray, Numerical solutions for the system of Fredholm integral equations of second kind by a new approach in volving semi orthogonal B-spline wavelet collocation method, Appl. Math. Comput., 234 (2014), 368-379.
- [47] B. N. Saray, M. Lakestani, and M. Razzaghi, Sparse Representation of System of Fredholm Integro-Differential Equations by using Alpert Multi-wavelets, Comput. Math. Math. Phys., 55(9) (2015), 1468-1483.
- [48] I. Singh and S. Kumar, Haar wavelet method for some nonlinear Volterra integral equations of the first kind, J. Comput. Appl. Math., 292 (2016), 541-552.
- [49] A. Tari, On the Existence, Uniqueness and Solution of the Nonlinear Volterra Partial Integro-Differential Equations, Int. J. Nonlinear Sci., 16 (2013), 152-163.
- [50] C. Yang, Chebyshev polynomial solution of nonlinear integral equations, J. Franklin Inst., 349 (2012), 947-956.
- [51] M. Zarebnia and J. Rashidinia, Convergence of the Sinc method applied to Volterra integral equations, Appl. Appl. Math., 5(1) (2010), 198-216.
- [52] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.
|