| تعداد نشریات | 45 |
| تعداد شمارهها | 1,434 |
| تعداد مقالات | 17,659 |
| تعداد مشاهده مقاله | 57,571,978 |
| تعداد دریافت فایل اصل مقاله | 19,291,018 |
تغییردهنده قطبش آرایشپذیر مایکرویوی و جاذب فراپهنباند تراهرتز تنظیمپذیر با ساختار گرافین-کوارتز-گرافین: تحلیل و طراحی | ||
| مجله مهندسی برق دانشگاه تبریز | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 26 دی 1403 اصل مقاله (1.75 M) | ||
| نوع مقاله: علمی-پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/tjee.2025.62907.4875 | ||
| نویسندگان | ||
| محمود رفائی بوکت1؛ مهدیه بزرگی* 2 | ||
| 1دانشیار، گروه مهندسی برق (دانشکده مهندسی)، دانشگاه زنجان، زنجان، ایران | ||
| 2استادیار، گروه مهندسی برق (دانشکده مهندسی)، دانشگاه زنجان، زنجان، ایران | ||
| چکیده | ||
| در این مقاله، روشی برای تحلیل برخورد موج صفحهای مایل به ساختار متشکل از گرافین- کوارتز-گرافین با میدانهای ساکن الکتریکی و مغناطیسی ارائه شده است تا بینشی فیزیکی از رفتار ناهمسانگردی چنین ساختاری بدست آید. ابتدا، نشان داده میشود که مدل درود میتواند برای مدلسازی رسانایی سطحی گرافین بایاس شده استفاده شود تا به کمک چنین مدلی، ساختار مذکور تحت تابش مایل امواج صفحهای با قطبشهای TE و TM و زوایای تابش مختلف تحلیل شود. سپس، ضرایب بازتاب و انتقال چنین ساختاری برای مقادیر مختلف پتانسیل شیمیایی گرافین و ضخامتهای مختلف زیرلایه محاسبه میشود. با بررسی نتایج، مشخص میشود که چنین ساختاری منجر به چرخش و تغییر قطبش امواج صفحهای تابشی میشود. این زاویه چرخش برای امواج صفحهای با قطبش TM بزرگتر از امواج با قطبش TE است، زمانی که تابش مایل اتفاق میافتد. نهایتا، با ایجاد الگوی متناوبی از شکافها بر روی صفحه گرافین بالایی و تغییر پتانسیل شیمیایی صفحات گرافین، جاذبی فراپهنباند و تنظیمپذیر با میزان جذب بیش از 80درصد در بازه 7THz~0.1 طراحی میشود. شبیهسازیهای انجام شده، نشان میدهد که ساختار پیشنهادی به ازای زاویه تابش کمتر از 8۰درجه برای امواج صفحهای با قطبشهای TE و TM عملکرد جاذبی بسیار خوبی دارد. | ||
| کلیدواژهها | ||
| صفحه گرافین؛ تغییردهنده قطبش؛ ساختار متناوب؛ جاذب تراهرتز؛ فراپهنباند؛ تنظیمپذیر | ||
| مراجع | ||
|
[1] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, A. K. Geim, "The electronic properties of graphene", Reviews of Modern Physics, vol. 81, no. 1, p. 109, 2009. [2] T. Palacios, A. Hsu, H. Wang, "Applications of graphene devices in RF communications", IEEE Communications Magazine, vol. 48, no. 6, pp. 122-128, 2010. [3] N. Chamanara, D. Sounas, T. Szkopek, C. Caloz, "Optically transparent flexible graphene reciprocal and nonreciprocal microwave planar components", IEEE Microwave and Wireless Components Letters, vol. 22, no. 7, pp. 360-362, 2012. [4] K.-I. Ho, M. Boutchich, C.-Y. Su, R. Moreddu, E. S. R. Marianathan, L. Montes, C.-S. Lai, “A Self‐Aligned High‐ Mobility Graphene Transistor: Decoupling the Channel with Fluorographene to Reduce Scattering,” Advanced Materials, vol. 27, no. 41, pp. 6519–6525, 2015. [5] R. E. P. de Oliveira, C. J. S. de Matos, “Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters”, Scientific Reports, vol. 5, p. 16949, 2015. [6] X. Hu, J. Wang, “Ultrabroadband Compact Graphene–Silicon TM-Pass Polarizer”, IEEE Photonics Journal, vol. 9, no. 2, pp. 1–10, 2017. [7] S. Cakmakyapan, P. Keng Lu, A. Navabi, M. Jarrahi, "Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime", Light Science and Application, vol. 7, no. 20, pp. 1-9, 2018. [8] S. Dash, C. Psomas, A. Patnaik, I. Krikids, "An ultra-widebnad orthogonal-beam directional graphene-based antenna for THz wireless systems", Scientific Reports, vol. 12, no. 1, p. 22145, 2022. [9] D. Ye, H. Zu, Z. Hu, Y. Xin, J. Guo, R. Song, D. He, " Flexible and compact tri-band graphene antenna for conformal Wi-Fi/WiMAX/5G applications", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 3, pp. 1086-1090, 2024. [10] N. Amin Nasr, H. Rasooli-Saghai, "Graphene-based plasmonic nanoantenna with trapzoidal structure in THz band", Optical Materials, vol. 148, p. 114771, Feb. 2024. [11] Y. wang, H. Liu, S. Wang, M. Cai, "Wide-range tunable narrow band-stop filter based on bilayer graphene in the mid-infrared region", IEEE Photonics Journal, vol. 12, no. 4, pp. 1-10, 2020. [12] G. C. Ram, P. Sambaiah, S. Yuvaraj, M. Kartikeyan, "Tunable bandstop filter using graphene in terahertz frtequency band", AEU-International Journal of Electronics and Communications, vol. 144, p. 154057, 2022. [13] S. Pawar, H. Mehrpour Bernety, A. B. Yakovlev, "Graphene-metal metasurface for cloaking of cylindrical objects at low-Terahertz frequencies", IEEE ACCESS, vol.10, pp. 130200 – 130211, 2022. [14] C. Fu, L. Zhang, L. Liu, S. Dong, W. Yu, L. Han, "RCS reduction on patterned graphene-based transparent flexible metasurface absorber," IEEE Transactions on Antennas and Propagation, vol. 71, no. 2, pp. 2005-2010, 2023. [15] M. Rafaei-Booket, Z. Atlasbaf, M. Shahabadi, "Metallic grating on a periodic substrate as a planar artificial magnetic conductor", 8th International Symposium on Telecommunications (IST), pp. 27-28, 2016. [16] T. Liu, S.-S. Kim, "Ultrawide bandwidth electromagnetic wave absorbers composed of double-layer frequency selective surface with different patterns", Scientific Reports, vol. 8, p. 13889, 2018. [17] M. Rafaei-Booket, M. Bozorgi, "Plane-wave scattering analysis of artificial anisotropic dielectric sandwiched by metallic cross-dipoles grating", 28th Iranian Conference on Electrical Engineering (ICEE), pp. 1-5, 2020. [18] M. Bozorgi, M. Rafaei-Booket, "Scattering analysis of periodic thin film sandwiched by plasmonic nano-antenna grating", 10th International Symposium on Telecommunications (IST), pp. 1-4, 2020. [19] M. Bozorgi, M. Rafaei-Booket, " Reconfigurable Planar metasurface Lens using TiO2: Design and Simulation, "TJEE, vol. 52, no. 4, pp. 229-237, 2022. [20] M. M. Fakharian, "Design of a terahertz metasurface absorber based on machine learning technique", Tabriz Journal of Electrical Engineering, DOI: 10.22034/TJEE.2024.58340.4713, 2024. [21] M. Islam, J. Sultana, M. Biabanifard, et al., "Tunable localized surface plasmon graphene metasurface for multiband superabsorption and tetahertz sensing," Carbon, vol. 158, pp. 559-567, 2020. [22] O. M. Daraei, K. Goudarzi, M. Bemani, "A tunable ultra- broadband terahertz absorber based on two layer of graphene ribbons, " Optic & Laser Technology, vol. 122, p. 105853, 2020. [23] Y. Chen, et al. "Tunable terahertz perfect-absorber with dual peak based on reverse graphene patch metamaterial", IEEE Photonics Journal, vol.13, no.3, pp.1-13, 2021. [23] Q. Ma, W. Hong, and L. Shui, "Structural optimization of single layer graphene metamaterial for ultra-broad band terahertz absorber ", IEEE Photonic Journal, vol. 13, no.5, 2021. [25] H. Yu, P. Xiang, Y. Zhu, S. Huang, and X. Luo, "Polarization insensitive broadband concentric-annular-strip octagonal terahertz graphene metamaterial absorber", IEEE Photonic Journal, vol.14, no.1, 2022. [26] Z. Ding, W. Su, H. Lu, H. Wu, H. Yao, "Terahertz absorber based on double-layer graphene metasurface with tunable absorption window and intensity", Optics & Laser Technology, vol. 163, p. 109446, 2023. [27] X. Du, F. Yan, et al., "A broadband switchable metamaterial absorber reflector based on multi-laps graphene sheets in the terahertz band, "IEEE photonic Journal, vol.13, no.5, Oct. 2021. [28] R. Babu, R. Agrahari, P. K. Jain, M. Mahto, "Bifunctional graphene-graphite-based THz wave metasurface absorber for sensing and electromagnetic shielding", IEEE Transactions on Circuits and Systems I: Regular papers, vol. 71, no. 11, Nov. 2024. [29] R. Kubo, "Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magneticand conduction problems," Journal of the physical society of Japan, vol. 12, no. 6, pp. 570-586, 1957. [30] D. L. Sounas, C. Caloz, "Electromagnetic nonreciprocity and gyrotropy of graphene", Applied Physics Letters, vol. 98, no. 2, pp. 021911(1-3), Jan. 2011. [31] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, "On the universal ac optical background in graphene," New Journal of Physics, vol. 11, 2009. [32] C. A. Balanis, Advanced engineering electromagnetics, 2nd ed., Wiley, 2012. [33] M. L. S. Lipschutz, Schaum’s Outline of Linear Algebra 4th (fourth) edition Text Only, 4th edition, McGraw-Hill, 2008. [34] S. E. Hosseininejad, N. Komjani, and M. T. Noghani, "A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides," IEEE Transaction Nano-Technology, vol. 14, no. 5, Sept. 2015. [35] S. K. Gupta, and P. K. Basu, "Tunability in graphene based metamaterial absorber structures in mid-infrared region," IEEE Photonics Journal, vol. 14, no. 3, pp. 2223805(1)-2223805(7), Jun. 2022. [36] H. Eskandari, M. Rafaei-Booket, M. Kamyab, M. Veysi, "Investigations on a class of widebnad printed slot antenna", IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 1221-1224, 2010. [37] Z. Ding, W. Su, Y. Luo, L. Ye, H. Wu, H. Yao, "Design of an ultra-broadband terahertz absorber based on a patterned graphene metasurface with machine learning", Journal of Materials Chemistary C, vol. 11, no. 17, pp. 5625-5633, 2023. [38] C. Chen, et al., "Large-scale fabrication of customized, tunable ultrathin, and Flexible Metamaterial Absorbers Based on Laser-induced Graphene", Chemical Engineering Journal, vol. 489, Jun. 2024. [39] B. Wu, and Y. Zhao, Graphene-Based Metamaterial Absorbers, In: Li, L., Shi, Y., Cui, T.J. (eds) Electromagnetic Metamaterials and Metasurfaces: From Theory To Applications. Springer, Singapore, 2024. https://doi.org/10.1007/978-981-99-7914-1_5. [40] P. K. Khoozani, M. Maddahali, M. Shahabadi, M. Bakhtafrouz, "Analysis of magnetically biased graphene-based periodic structures using a transmission-line formulation", Journal of the Optical Society of America-B, vol. 33, no. 12, pp. 2566-2676, Dec. 2016. [41] S. A. Amanatiadis, N. V. Kantartzis, T. Ohtani, Y. Kanai, "Precise modeling of magnetically biased grapheme through a recursive conventional FDTD method", IEEE Transactions on Magnetics, vol. 54, no. 3, Mar. 2018. [42] M. B. Rhouma, B. Guizal, P. Bonnet, F. Paladian, K. Edee, "Semi-analytical model for the analysis of a magnetically biased 1D subwavelength grapheme-strip-grating", Optics Continuum, vol. 1, no. 5, pp. 1144-1156, 2022. [43] M. Rafaei-Booket, and M. Bozorgi, "Spectral dyadic Green’s function for multilayer periodic Bi-anisotropic media", IEEE Access, vol. 10, pp. 116261 – 116272, Nov. 2022. [44] M. Bozorgi, and M. Rafaei-Booket, "Metallic array on a biased Ferrite substrate as a reconfigurable reflectarray antenna," 9th International Symposium on Telecommunications (IST 2018). | ||
|
آمار تعداد مشاهده مقاله: 353 تعداد دریافت فایل اصل مقاله: 7 |
||