- [1] O. M. Abo-Seida, N. T. M. El-dabe, A. R. Ali, and G. A. Shalaby, Cherenkov FEL reaction with plasma-filled cylindrical waveguide in fractional D-dimensional space, IEEE Transactions on Plasma Science, 49(7) (2021), 2070-2079.
- [2] S. Aggarwal, A. R. Gupta, and S. D. Sharma, A new application of Shehu transform for handling Volterra integral equations of first kind, International Journal of Research in Advent Technology, 7(4) (2019), 439-445.
- [3] A. R. Ali, N. T. M. Eldabe, A. E. H. A. El Naby, et al., EM wave propagation within plasma-filled rectangular waveguide using fractional space and LFD, European Physical Journal Special Topics, (2023).
- [4] C. Brown, D. Lee, and R. Patel, Advanced transform methods in boundary value problems, Applied Mathematics and Computation, 425 (2024), 129-145.
- [5] R. Belgacem, A. Bokhari, M. Kadi, and D. Ziane, Solution of non-linear partial differential equations by Shehu transform and its applications, Malaya Journal of Matematik, 8(4) (2020), 1974-1979.
- [6] A. H. Bhrawy, M. A. Zaky, and M. Abdel-Aty, A fast and precise numerical algorithm for a class of variable-order fractional differential equations, Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, 18(1) (2017), 17-24.
- [7] J. Biazar, K. Hosseini, and P. Gholamin, Homotopy perturbation method for the Fokker-Planck equation, International Mathematical Forum, 3 (2008), 945-954.
- [8] F. Bouchaala, M. Y. Ali, J. Matsushima, M. S. Jouini, A. I. Mohamed, and S. Nizamudin, Experimental study of seismic wave attenuation in carbonate rocks, SPE Journal, 29(4) (2024), 1933-1947.
- [9] M. F. El-Amin, S. Abdel-Naeem, and N. A. Ebrahiem, Numerical modeling of heat and mass transfer with a single-phase flow in a porous cavity, Applied Mathematics & Information Sciences, 13(3) (2019), 427-435.
- [10] A. Diaz-Acosta, F. Bouchaala, T. Kishida, M. S. Jouini, and M. Y. Ali, Investigation of fractured carbonate reservoirs by applying shear-wave splitting concept, Advances in Geo-Energy Research, 7(2) (2022), 99-110.
- [11] N. T. M. Eldabe, A. R. Ali, A. A. El-shekhipy, and G. A. Shalaby, Non-linear heat and mass transfer of second grade fluid flow with hall currents and thermophoresis effects, Applied Mathematics & Information Sciences, 11(1) (2017), 267-280.
- [12] N. T. M. Eldabe, A. R. Ali, and A. A. El-shekhipy, Influence of thermophoresis on unsteady MHD flow of radiation absorbing Kuvshinski fluid with non-linear heat and mass transfer, American Journal of Heat and Mass Transfer, (2017).
- [13] A. A. Elhadary, A. El-Zein, M. Talaat, G. El-Aragi, and A. El-Amawy, Studying the effect of the dielectric barrier discharge non-thermal plasma on colon cancer cell line, International Thin Films Science and Technology, 10(3) (2021), 161-168.
- [14] T. M. Elzaki and E. M. A. Hilal, Solution of linear and nonlinear partial differential equations using mixture of Elzaki transform and the projected differential transform method, Math. Theo. and Model, 2 (2012), 50-59.
- [15] R. Gautam, A. Sinha, H. R. Mahmood, N. Singh, S. Ahmed, N. Rathore, H. Bansal, and M. S. Raza, Enhancing handwritten alphabet prediction with real-time IoT sensor integration in machine learning for image, Journal of Smart Internet of Things, 1 (2022), 53-64.
- [16] A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos, Solitons & Fractals, 39(3) (2009), 1486-1492.
- [17] A. Ghorbani and J. Saberi-Nadjafi, He’s homotopy perturbation method for calculating Adomian polynomials, International Journal of Non-linear Sciences and Numerical Simulation, 8(2) (2007), 229-232.
- [18] J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178(3-4) (1999), 257-262.
- [19] O. A. Ilhan, J. Manafian, and M. Shahriari, Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev–Petviashvili equation, Computers & Mathematics with Applications, 78(8) (2019), 24292448.
- [20] S. Islam, B. Halder, and A. R. Ali, Optical and rogue type soliton solutions of the (2+1) dimensional nonlinear Heisenberg ferromagnetic spin chains equation, Scientific Reports, 13 (2023), 9906.
- [21] B. Jang, Solving linear and nonlinear initial value problems by the projected differential transform method, Computer Physics Communications, 181(5) (2010), 848-854.
- [22] V. Joshi and M. Kapoor, A novel technique for numerical approximation of two-dimensional non-linear coupled Burgers’ equations using uniform algebraic hyperbolic tension B-spline based differential quadrature method, Applied Mathematics & Information Sciences, 15(2) (2021), 217-239.
- [23] Y. Khan and Q. Wu, Homotopy perturbation transform method for nonlinear equations using He’s polynomials, Computers and Mathematics with Applications, 61(8) (2011), 1963-1967.
- [24] J. Kim and S. Park, Influence of boundary conditions on the behavior of solutions to nonlinear damped plate equations, Applied Mathematical Modelling, 109 (2023), 1234-1250.
- [25] G. Krishna, R. Singh, A. Gehlot, P. Singh, S. Rana, S. V. Akram, and K. Joshi, An imperative role of studying existing battery datasets and algorithms for battery management system, Review of Computer Engineering Research, 10(2) (2023), 28-39.
- [26] Y. Liu and W. Zhang, A hybrid finite element approach for solving nonlinear plate equations, Computational Mechanics, 71(4) (2023), 945-960.
- [27] M. M. U. Mahmuda, M. N. Alam, and A. R. Ali, Influence of magnetic field on MHD mixed convection in lid-driven cavity with heated wavy bottom surface, Scientific Reports, 13 (2023), 18959.
- [28] S. Maitama and W. Zhao, New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations, arXiv preprint, arXiv:1904.11370, (2019).
- [29] K. Moaddy, Reliable numerical algorithm for handling differential-algebraic system involving integral-initial conditions, Applied Mathematics & Information Sciences, 12(2) (2018), 317-330.
- [30] K. Moaddy, Reliable numerical algorithm for handling differential-algebraic system involving integral-initial conditions, Applied Mathematics & Information Sciences, 12(2) (2018), 317–330.
- [31] T. Q. Nguyen, D. K. Tran, and H. M. Vu, Existence and uniqueness of solutions to nonlinear damped plate equations, Journal of Differential Equations, 310 (2023), 567-589.
- [32] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, and M. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results in Physics, 21 (2021), 103769.
- [33] S. S. Noor Azar, A. Nazari-Golshan, and M. Souri, On the exact solution of Newell-Whitehead-Segel equation using the homotopy perturbation method, Australian Journal of Basic and Applied Sciences, (2011).
- [34] K. Sherazi, N. Sheikh, M. Anjum, and A. G. Raza, Solar drying experimental research and mathematical modelling of wild mint and peach moisture content, Journal of Asian Scientific Research, 13(2) (2023), 94-107.
- [35] R. Singh and A. Patel, Seismic response of building components using nonlinear damped plate equations, Journal of Structural Engineering, 150(3) (2024), 04023012.
- [36] A. Smith and B. Jones, Iterative methods for nonlinear partial differential equations, Journal of Computational Mathematics, 51(4) (2023), 223-238.
- [37] M. Tatari, M. Dehghan, and M. Razzaghi, Application of the Adomian decomposition method for the Fokker–Planck equation, Mathematical and Computer Modelling, 45(5-6) (2007), 639-650.
- [38] A. M. Wazwaz, Partial differential equations and solitary waves theory, Springer Science & Business Media, (2010).
- [39] X. J. Yang, A. A. Abdulrahman, and A. R. Ali, An even entire function of order one is a special solution for a classical wave equation in one-dimensional space, Thermal Science, 27(1B) (2023), 491-495.
- [40] A. Yıldırım, He’s homotopy perturbation method for nonlinear differential-difference equations, International Journal of Computer Mathematics, 87(5) (2008), 992-996.
- [41] L. Zhou, X. Wang, and H. Chen, Dynamic response of thin plates made from advanced composite materials under nonlinear analysis, Materials Science and Engineering A, 832 (2024), 142345.
- [42] H. Zhang, J. Manafian, G. Singh, O. A. Ilhan, and A. O. Zekiy, N-lump and interaction solutions of localized waves to the (2 + 1)-dimensional generalized KP equation, Results in Physics, 25 (2021), 104168.
|