| تعداد نشریات | 45 |
| تعداد شمارهها | 1,435 |
| تعداد مقالات | 17,673 |
| تعداد مشاهده مقاله | 57,698,756 |
| تعداد دریافت فایل اصل مقاله | 19,373,422 |
An accurate finite-difference scheme for the numerical solution of a fractional differential equation | ||
| Computational Methods for Differential Equations | ||
| مقاله 12، دوره 14، شماره 1، فروردین 2026، صفحه 165-187 اصل مقاله (623.28 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2024.61919.2699 | ||
| نویسندگان | ||
| Aniruddha Seal؛ Srinivasan Natesan* | ||
| Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati - 781039, India. | ||
| چکیده | ||
| In this article, a steady-state fractional-order boundary-value problem is considered with a fractional convection term. The highest-order derivative term involves a mixed-fractional derivative, which appears as a combination of a first-order classical derivative and a Caputo fractional derivative. We propose an L1 scheme over a uniform mesh for the numerical solution of the fractional differential equation. With the help of a properly chosen barrier function, we discuss error analysis and prove that the proposed method converges with almost first-order. The proposed scheme is also applied to a semilinear fractional differential equation. Numerical experiments are presented to validate the proposed method. | ||
| کلیدواژهها | ||
| Mixed-fractional derivative؛ Fractional differential equation؛ Fractional-convection term؛ L1 method؛ Discrete comparison principle؛ Stability؛ Convergence | ||
|
آمار تعداد مشاهده مقاله: 429 تعداد دریافت فایل اصل مقاله: 433 |
||