- [1] N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdV-mKdV equations with solitary wave solutions, Partial Diff. Eq. Appl. Math., 9 (2024), 100599.
- [2] Z. Alsalami, Modeling of Optimal Fully Connected Deep Neural Network based Sentiment Analysis on Social Networking Data, Journal of Smart Internet of Things, 2022(1) (2023), 114-132.
- [3] A. A. Al-Ansari, M. M. Kharnoob, and Mustafa A. Kadhim, Abaqus Simulation of the Fire’s Impact on Reinforced Concrete Bubble Deck Slabs, E3S Web of Conferences 427, (2023), 02001.
- [4] H. M. Baskonus and H. Bulut, Exponential prototype structures for (2+1)-Dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves in Random and Complex Media, 26 (2016), 201-208.
- [5] A. Biswas, 1-soliton solution of the generalized Zakharov-Kuznetsov modified equal width equation, Applied Mathematics Letters, 22 (2009), 1775-1777.
- [6] Y. Chen, B. Li, and H. Zhang, Explicit exact solutions for a new generalized Hamiltonian amplitude equation with nonlinear terms of any order, Z. angew. Math. Phys., 55 (2004), 983-993.
- [7] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numerical Methods for Partial Differential Equations Journal, 26 (2010), 448-479.
- [8] M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method, Zeitschrift fu¨r Naturforschung A, 64(a) (2009), 420-430.
- [9] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of semi–analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Mathematical Methods in the Applied Sciences, 33 (2010), 1384-1398.
- [10] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, International Journal of Numerical Methods for Heat and Fluid Flow, 21 (2011), 736-753.
- [11] M. Dehghan, J. Manafian, and A. Saadatmandi, Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method, International Journal of Modern Physics B, 25 (2011), 2965-2981.
- [12] S. T. Demiray an H. Bulut, New Exact Solutions of the New Hamiltonian Amplitude Equation and Fokas Lenells Equation, Entropy, 17 (2015), 6025-6043.
- [13] S. Demiray, O.¨ Unsal, and A. Bekir,¨ Exact solutions of nonlinear wave equations using (G’/G,1/G)-expansion method, J. Egyptian Math. Soc., 23 (2015), 78-84.
- [14] A. M. Diop, J. L. Polleux, C. Algani, S. Mazer, M. Fattah, and M. E. Bekkali, Design electrical model noise and perform nonlinearities of SiGe bipolar phototransistor, International Journal of Innovative Research and Scientific Studies, 6(4) (2023), 731-740.
- [15] M. Eslami and M. Mirzazadeh, The simplest equation method for solving some important nonlinear partial differential equations, Acta Univ Apul., 33 (2013), 167-170.
- [16] M. Gaidur, I. Pascal, E. Rakosi, T. M. Ulian, and G. Manolache, Analytical study regarding the topological optimization of an automotive gear wheel pair, Edelweiss Applied Science and Technology, 7(1) (2023) 38-70.
- [17] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [18] A. Hasseine, Z. Barhoum, M. Attarakih, and H. J. Bart, Analytical solutions of the particle breakage equation by the Adomian decomposition and the variational iteration methods, Advanced Powder Technology, 24 (2013), 252-256.
- [19] E. R. Ibrahim, M. S. Jouini, F. Bouchaala, and J. Gomes, Simulation and validation of porosity and permeability of synthetic and real rock models using three-dimensional printing and digital rock physics, ACS omega, 6(47) (2021), 31775-31781.
- [20] S. Kumar, K. Singh, and R. K. Gupta, Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G’/G)-expansion method, Pramana J. Phys., 79 (2012), 41-60.
- [21] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Meth. Diff. Equ., 10(2) (2022), 445-460.
- [22] J. Manafian and M. Lakestani, Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity, The European Physical Journal Plus, 130 (2015), 1-12.
- [23] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, The European Physical Journal Plus, 130 (2015), 1-20.
- [24] J. Manafian and M. Lakestani, Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G’/G)-expansion method, Pramana, 130 (2015), 31-52.
- [25] J. Manafian and M. Lakestani, New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients, International Journal of Engineering Mathematics, 2015 (2015), Article ID 107978.
- [26] J. Manafian, M. Lakestani, and A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach, International Journal of Applied and Computational Mathematics, 130 (2015), 1-12.
- [27] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(ϕ(ξ))-expansion method, Optik, 127(14) (2016), 5543-5551.
- [28] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov-Ivanov model via tan(ϕ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [29] J. Manafian and M. Lakestani, Application of tan(ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127 (2016), 2040-2054.
- [30] J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitz´eica type nonlinear evolution equations arising in nonlinear optics, Optical and Quantum Electronics, 48 (2016), 116.
- [31] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(ϕ/2)-expansion method, Optik, 127 (2016), 5543-5551.
- [32] J. Manafian, Optical soliton solutions for Schro¨dinger type nonlinear evolution equations by the tan(ϕ/2)-expansion method, Optik, 127 (2016), 4222-4245.
- [33] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)- dimensional variablecoefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 150 (2020), 103598.
- [34] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Differ. Equ. Appl. Math., 9 (2024), 100600.
- [35] M. Mirzazadeh, Topological and non-topological soliton solutions of Hamiltonian amplitude equation by He’s semi-inverse method and ansatz approach, J. Egyptian Math. Soc., 23 (2015), 292-296.
- [36] S. R. Moosavi, N, Taghizadeh, and J. Manafian, Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method, Comput. Meth. Diff. Equ., 8(3) (2020), 537-552.
- [37] T. Nawaz, A. Yildirim, and S. T. Mohyud-Din, Analytical solutions Zakharov-Kuznetsov equations, Advanced Powder Technology, 24 (2013), 252-256.
- [38] M. M. Rashidi, T. Hayat, T. Keimanesh, and H. Yousefian, A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method, Heat Transfer-Asian Research, 42 (2013), 31-45.
- [39] E. Tonti, Variational formulation of nonlinear differential equations (I), Acad. R. Belg. Bull. Cl. Sci. 55 (1969), 137-165.
- [40] E. Tonti, Variational formulation of nonlinear differential equations (II), Acad. R. Belg. Bull. Cl. Sci., 55 (1969), 262–278.
- [41] S. Ullah, M. Y. Ali, M. A. Iqbal, F. Bouchaala, and H. Saibi, Structures and stratigraphy of Al Jaww Plain, southeastern Al Ain, United Arab Emirates: implications for aquifer systems and mantle thrust sheet, Geoscience Letters, 10(1) (2023), 53.
- [42] M. Wadati, H. Segur, M. J. Ablowitz, A new hamiltonian amplitude equation governing modulated wave instabilities, J. Phys. Soc. Japan, 61 (1992), 1187-1193.
- [43] Z. Yan, Symbolic computation and new families of solitary wave solutions to a Hamiltonian amplitude equation, Z. angew. Math. Phys., 53 (2002), 533-537.
- [44] G. Zhao, F. Bouchaala, and M. S. Jouini, Anisotropy estimation by using machine learning methods, In Seventh International Conference on Engineering Geophyics, Al Ain, UAE, Society of Exploration Geophysicists, (2024), 217-221.
- [45] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.
|