- [1] A. Atangana and E. F. Goufo, On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries, BioMed research international, 2014(1) (2014), 261383.
- [2] A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13(1) (2018), 3.
- [3] Y. Chen, M. Yi, and C. Yu, Error analysis for numerical solution of fractional differential equation by Haar wavelets method, Journal of Computational Science, 3(5) (2012), 367-73.
- [4] M. H. Derakhshan, The stability analysis and numerical simulation based on Sinc Legendre collocation method for solving a fractional epidemiological model of the Ebola virus, Partial Differential Equations in Applied Mathematics, 3 (2021), 100037.
- [5] M. A. Dokuyucu and H. Dutta, A fractional order model for Ebola Virus with the new Caputo fractional derivative without singular kernel, Chaos, Solitons & Fractals, 134 (2020), 109717.
- [6] O. Ilhan and G. S¸ahin, A numerical approach for an epidemic SIR model via Morgan-Voyce series, International Journal of Mathematics and Computer in Engineering, (2024).
- [7] H. Jafari, P. Goswami, R. S. Dubey, S. Sharma, and A. Chaudhary, Fractional SIZR model of Zombies infection, International Journal of Mathematics and Computer in Engineering, (2023).
- [8] F. M. Khan, A. Ali, E. Bonyah, and Z. U. Khan, [Retracted] The Mathematical Analysis of the New Fractional Order Ebola Model, Journal of Nanomaterials, 2022(1) (2022), 4912859.
- [9] S. Kumbinarasaiah, A novel approach for multi dimensional fractional coupled Navier–Stokes equation, SeMA Journal, 80(2) (2023), 261-282.
- [10] S. Kumbinarasaiah and M. P. Preetham, A study on homotopy analysis method and clique polynomial method, Computational Methods for Differential Equations, 10(3) (2022) 774-88.
- [11] S. Kumbinarasaiah and M. Mulimani, The Fibonacci wavelets approach for the fractional Rosenau–Hyman equations, Results in Control and Optimization, 1 (2023), 100221.
- [12] S. Kumbinarasaiah and R. A. Mundewadi, Numerical solution of fractional-order integro-differential equations using Laguerre wavelet method, Journal of Information and Optimization Sciences, 43(4) (2022), 643-662.
- [13] S. Liang and D. J. Jeffrey, Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation, Communications in Nonlinear Science and Numerical Simulation, 14(12) (2009),4057-64.
- [14] S. Liao, On the proposed homotopy analysis technique for nonlinear problems and its applications, Shanghai Jiao Tong University, (1992).
- [15] S. Liao, An explicit, totally analytic approximate solution for Blasius’ viscous flow problems, International Journal of Non-Linear Mechanics, 34(4) (1999),759-78.
- [16] S. Liao, Beyond perturbation: introduction to the homotopy analysis method, Chapman and Hall/CRC, 2003.
- [17] S. Liao , Homotopy analysis method in nonlinear differential equations, Beijing: Higher education press, (2012).
- [18] S. Liao, Advances in the homotopy analysis method, World Scientific, (2013).
- [19] Z. M. Odibat, A study on the convergence of homotopy analysis method, Applied Mathematics and Computation, 217(2) (2010), 782-789.
- [20] A. Rachah and D. F. M. Torres, Predicting and controlling the Ebola infection, Mathematical Methods in the Applied Sciences, 40(17) (2017), 6155-6164.
- [21] S. Rewar and D. Mirdha, Transmission of Ebola virus disease: an overview, Annals of global health, 80(6) (2014), 444-451.
- [22] Z. Sabir and M. Umar, Levenberg-Marquardt backpropagation neural network procedures for the consumption of hard water-based kidney function, International Journal of Mathematics and Computer in Engineering, 1(1) (2023), 127-138.
- [23] M. Sajid and T. Hayat, Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations, Nonlinear Analysis: Real World Applications, 9(5) (2008), 2296-2301.
- [24] S. C. Shiralasetti and S. Kumbinarasaiah, Some results on Haar wavelets matrix through linear algebra, Wavelet and Linear Algebra, 4(2) (2017), 49-59.
- [25] H. Singh, Analysis for fractional dynamics of Ebola virus model, Chaos, Solitons & Fractals, 138 (2020), 109992.
- [26] K. Srinivasa, H. M. Baskonus, and Y. G. S´anchez, Numerical solutions of the mathematical models on the digestive system and covid-19 pandemic by hermite wavelet technique, Symmetry, 13(12) (2021), 2428.
- [27] H. M. Srivastava and M. S. Khaled, Numerical simulation of the fractal-fractional Ebola virus, Fractal and Fractional, 4(4) (2020), 49.
- [28] H. M. Srivastava, M. S. Khaled, and M. M. Khader, An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus, Chaos, Solitons & Fractals, 140 (2020), 110174.
- [29] H. M. Srivastava and S. Deniz, A new modified semi-analytical technique for a fractional-order Ebola virus disease model Revista de la Real Academia de Ciencias Exactas, F´ısicas Naturales Serie A, Matem´aticas, 115(3) (2021), 137.
- [30] M. Zurigat, S. Momani, Z. Odibat, and A. Alawneh, The homotopy analysis method for handling systems of fractional differential equations, Applied Mathematical Modelling, 34(1) (2010), 24-35.
|