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Abstract

In this study, an Ebola virus model involving fractional derivatives in the Caputo sense is considered and studied

through three different techniques called the homotopy analysis method (HAM), the Haar wavelet method (HWM),
and the Runge-Kutta method (RKM). The HAM is a semi-analytical approach proposed for solving fractional-order

nonlinear systems of ordinary differential equations (ODEs), the Haar wavelet technique (HWT) is a numerical
approach for both fractional and integer order, and the RKM is a numerical method used to solve the system of

ODEs. We have drawn a semi-analytical solution in terms of a series of polynomials and numerical solutions for

the model. First, we solved the model through the HAM by choosing the preferred control parameter. Secondly,
the HWT is considered; through this technique, the operational matrix of integration is used to convert the given

fractional differential equations (FDEs) into a set of algebraic equation systems, and then the RKM is applied.

The model is studied through all three methods, and the solutions are juxtaposed with ND Solver solutions. The
nature of the model is analyzed with different parameters, and the calculations are performed using Scilab and

Mathematica software. The obtained results are expressed in graphs and tables. Convergence analysis has been

discussed in terms of theorems.
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1. Introduction

Ebola virus disease (EVD) is brought on by the Ebola virus, which was initially identified in 1976 in nations around
the Ebola River in West Africa. It is considered to be the most deadly viral disease. Ebola is the worst infection
because it may be transmitted from person to person via direct contact with infected persons. Humans can contract
it from infected animals, primarily fruit bats, monkeys, porcupines, gorillas, and chimpanzees, through direct contact
with their body fluids. The specific origin of the Ebola virus has yet to be identified, even though bats and other
animals, including monkeys, gorillas, and chimpanzees, are thought to be the source of this particular virus. The
Ebola virus has a high mortality rate and produces severe viral hemorrhagic fever. There are five species of Ebola
viruses in the genus Ebola virus; four of these species cause EVD in humans, whereas the fifth species solely infects
nonhuman primates (NHPs) [21]. Several mathematical models have been put out to examine how the West African
Ebola outbreak in 2014 spread. It is known that statistical techniques and mathematical models are used to project
the development of the disease; these days, a lot of researchers are focusing on the modeling and analysis of various
problems in the field of biomathematical sciences, which presents a variety of data sets about a biological phenomenon
like the Ebola virus, the distribution of bacterial cells, viruses, and the nervous system.

Numerous biological systems have been effectively and thoroughly modeled using ODEs. ODE-based models may be
used to investigate the resilience and fragility of a system, identify limit cycles, and aid in studying bifurcation behavior,
among other applications in system dynamics research. Since FDEs are determined to be the best representation of
chemical processes, science, and physical models, fractional calculus (FC) has been extensively applied in these fields.
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In recent decades, FC has become more significant in various engineering and applied scientific domains, including
fluid mechanics, viscoelasticity, convection, economics, electric transmission, and modeling of speech signals.

Researchers in several branches of science, mathematics, and engineering have paid close attention to mathematical
models containing fractional derivatives in recent years. Over the last several decades, fractional calculus has grown in
popularity and significance for many scholars due to its extensive applications in various scientific and technical fields.
Additionally, fractional derivatives have been used to describe several complicated biological systems; physical and
technical issues with viscoelasticity, physics, and fluid mechanics have led to more advancements in some fractional
operators for precise modeling of the memory effects while dealing with various disorders.

This work proposes numerical and semi-analytical techniques to solve the following fractional-order Ebola virus
epidemiological model:

DαS (t) = −aS (t)I (t) + bR(t)− cN,
DαI (t) = aS (t)I (t)− dI (t)− eI (t),

DαR(t) = eI (t)− bR(t),

DαZ (t) = dI (t) + cN,

(1.1)

with initial conditions

S (0) = S0, I (0) = I0, R(0) = R0, Z (0) = Z0.

A method that yields the analytic solution after some iterations is called a semi-analytical method. Here, we
considered one of the semi-analytic methods used to solve a system of FDEs called the HAM. The HAM creates
a convergent series solution for nonlinear mathematical models by using the idea of the homotopy in the topology.
It is possible by using a homotopy-Maclaurin series to handle the system’s nonlinearities. In 1992, the HAM was
created for the first time in Shanghai Jiaotong University by Liao Shijun for his Ph.D. thesis [14]. Then, in 1997, it
was modified by adding an auxiliary parameter [15] C0 ( 6= 0) known as the convergence-control parameter [16]. A
non-physical variable called the convergence control parameter offers an easy approach to confirming and enforcing the
convergence of a solution series. It is unusual for the HAM to naturally demonstrate the convergence in analytical and
semi-analytic techniques to nonlinear differential equations. First, unlike other series expansion techniques, the HAM
does not rely on either small or large physical factors directly, which allows it to apply to both strongly and weakly
nonlinear problems, overcoming some inherent limitations of the standard perturbation methods. Second, the HAM
unifies the Adomian decomposition method (ADM), the delta-expansion method, the homotopy perturbation method,
and the Lyapunov artificial small parameter approach [13, 23]. Strong solution convergence over the broader region
and parameter domains is frequently possible due to the method’s enhanced generality. Third, the HAM offers super
flexibility in the solution’s representation and in the method by which it is expressly achieved. The basis functions of
the intended solution and the related auxiliary linear operator of the homotopy can both be chosen with a significant
degree of freedom. Finally, the HAM is a straightforward method that guarantees the convergence of the solution
series, in contrast to the other analytical approximation methods.

We found several methods are used to analyze fractional EVD models, such as the Adam-Bashforth method [5], the
Sinc-Legendre collocation method [4], the Chebyshev spectra collocation method [28], Lagrange polynomial functions
[27], the fractional Adam-Bashforth method [2, 8], the homotopy decomposition method [1], the Runge Kutta IV and
V order method [20], the optimal perturbation iteration method [29], the computational method based on iterative
scheme [25], different fractional methods of the SIZR model [7], and the SIR model [6, 22].

Here, we applied the HWT to solve the model. When representing data or other functions, wavelets are mathematical
functions that meet specific criteria. Since Joseph Fourier realized that sines and cosines could be superposed to
describe other functions in the early 1800s, approximation utilizing the superposition of functions has been used. In
the 1980s and 1990s, wavelets were created as an alternative to Fourier analysis of signals. Jean Morlet, Baroness
Ingrid Daubechies, Alex Grossman, Palle Jorgensen, Yves Meyer, Ronald Coifman, Alfred Haar, and Stephane Mallat
were a few key players in this invention. Yet, the scale at which we examine the data has a specific significance in
wavelet analysis. Different scales or resolutions of data are processed by wavelet algorithms. Wavelet transforms are
extremely helpful for signal analysis, compression, and de-noising. Fourier analysis is impoverished at approximating
sharp spikes when investigating its solutions; however, we can employ approximation functions that are tidily contained
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in finite domains in appreciations of wavelet analysis. For estimating data with sharp discontinuities, wavelets work
well. Compared to other methods [9, 11], the wavelet approach gives better outcomes. Numerical methods based
on wavelets are effective for solving FDEs [26]. The Haar wavelets are compactly supported, and orthogonal with
multi-resolution analysis [12]. According to our knowledge, we could not find any work on applying the HAM and the
HWT to the fractional Ebola model, so we have solved the above model through the HAM and the HWT.

This paper is arranged as described as follows. Preliminaries of the Haar wavelets and their operational integration
matrix are covered in section 2. The HAM and the HWT, which are employed to solve the model, are explained in
section 3. A convergence analysis of the HAM and the HWT is drawn in section 4. Implementation of the methods
to the model is discussed in section 5. The conclusion is outlined in section 6.

2. Priliminaries

In this section, we present the fundamentals of the Haar wavelets and their operational integration matrix. First,
we will review the definition of a wavelet.

A wavelet can be expressed as a real-valued function Ψ(t) that satisfies the following conditions [24]:∫ ∞
−∞

Ψ(t)dt = 0, and

∫ ∞
−∞
|Ψ(t)|2dt = 1.

This means that Ψ(t) is an oscillatory function having unit energy and zero mean. More precisely, wavelets are defined
as

Ψa,b(t) =
1√
a

Ψ(
t− b
a

), a 6= 0, b ∈ R,

where a and b, respectively, represent the dilation and translation. Consider an interval [A, B] ⊂ R, which is divided
into m subintervals, having the interval size ∆t = B−A

m . The ith orthogonal set of Haar functions defined on the
interval [A,B] is defined as

hi(t) =


1, ζ1(i) ≤ t < ζ2(i),

−1, ζ2(i) ≤ t < ζ3(i),

0, otherwise,

(2.1)

where,

ζ1(i) = A+
k − 1

2j
m∆t,

ζ2(i) = A+
k − ( 1

2 )

2j
m∆t,

ζ3(i) = A+
k

2j
m∆t,

for i = 1, 2, ...,m, m = 2J , and J ∈ Z+ called the maximum level of resolution. Here k and j are the integer
decomposition of the index i, that is, i = k + 2j − 1, 0 ≤ j < 1, and 1 ≤ k < 2j + 1. Eq. (2.1) is valid for i ≥ 2; for
i = 1 we have

hi(t) =

{
1, for x ∈ [A,B],

0, otherwise.
(2.2)

Now, we indicate how the operational integration matrix of the Haar wavelets can be obtained. For the integration of
the general order α, the Haar wavelet operational matrix Qα is provided by

QαHm(t) = JαHm(t) = [Jαh0(t), Jαh1(t), Jαh2(t), ..., Jαhm−1(t)],

QαHm(t) = [Qh0(t), Qh1(t), Qh2(t), ..., Qhm−1(t)], (2.3)
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where

Qhi(t) =


0, A ≤ t < ζ1(i),

Φ1, ζ1(i) ≤ t < ζ2(i),

Φ2, ζ2(i) ≤ t < ζ3(i),

Φ3, ζ2(i) ≤ t < B,

(2.4)

where

Φ1 =
(t− ζ1(i))α

Γ(α+ 1)
,

Φ2 =
(t− ζ1(i))α

Γ(α+ 1)
− 2

(t− ζ2(i))α

Γ(α+ 1)
,

φ3 =
(t− ζ1(i))α

Γ(α+ 1)
− 2

(t− ζ2(i))α

Γ(α+ 1)
+

(t− ζ3(i))α

Γ(α+ 1)
.

Eq. (2.4) is valid for i ≥ 1. For i = 0, we have

Qh0(t) =

{
tα

Γ(α+1) , t ∈ [A,B],

0, otherwise.

For instance, if α ∈ R, we construct an operational matrix for various α and J values in the next cases.

Case 1. For α = 1 and J = 3, the operational matrix is obtained as follows:

Q1Hm(t) =



0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375
0.0625 0.1875 0.3125 0..4375 0.4375 0.3125 0.1875 0.0625
0.0625 0.1875 0.1875 0.0625 0 0 0 0

0 0 0 0 0.0625 0.1875 0.1875 0.0625
0.0625 0.0625 0 0 0 0 0 0

0 0 0.0625 0.0625 0 0 0 0
0 0 0 0 0.0625 0.0625 0 0
0 0 0 0 0 0 0.0625 0.0625


. (2.5)

Case 2. Considering α = 2 and J = 3, the operational matrix is achieved as

Q2Hm(t) =



0.00195313 0.0175781 0.0488281 0.0957031 0.158203 0.236328 0.330078 0.439453

0.00195313 0.0175781 0.0488281 0.0957031 0.154297 0.201172 0.232422 0.248047

0.00195313 0.0175781 0.0449219 0.0605469 0.0625 0.0625 0.0625 0.0625
0 0 0 0 0.00195313 0.0175781 0.0449219 0.0605469

0.00195313 0.0136719 0.015625 0.015625 0.015625 0.015625 0.015625 0.015625

0 0 0.00195313 0.0136719 0.015625 0.015625 0.015625 0.015625
0 0 0 0 0.00195313 0.0136719 0.015625 0.015625

0 0 0 0 0 0 0.00195313 0.0136719


.

Case 3. Similarly, we obtain the operational matrix for α = 1.5 and J = 3 in the following equation:

Q1.5Hm(t) =



0.0117539 0.0610753 0.131413 0.217686 0.317357 0.428818 0.550933 0.682843

0.0117539 0.0610753 0.131413 0.217686 0.293849 0.306667 0.288107 0.24747
0.0117539 0.0610753 0.107905 0.0955356 0.0662843 0.0545208 0.047633 0.0428933

0 0 0 0 0.0117539 0.0610753 0.107905 0.0955356
0.117539 0.0375674 0.0210165 0.0159352 0.0133974 0.0117908 0.010654 0.00979445

0 0 0.117539 0.0375674 0.0210165 0.0159352 0.0133974 0.0117908
0 0 0 0 0.117539 0.0375674 0.0210165 0.0159352

0 0 0 0 0 0 0.117539 0.0375674


.

In a similar way, we can develop the operational matrix of the Haar wavelets for distinct α values as per our require-
ments.
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3. Method of Solution

This section describes the HAM and HWT that are used to solve the model. The implementation of the HWT for
the specified fractional model is also discussed further below.

3.1. The homotopy analysis method. Consider the system of nonlinear FDEs with different physical conditions
[30]

Dα[yi(t)] = gi(t, y1, y2, ..., yn), i = 1, 2, 3, ..., n, 0 < α ≤ 1, t ≥ 0, (3.1)

subject to the conditions:

yi = ai, i = 1, 2, 3, ..., n, (3.2)

where Dα represents the differential operator and yi(t) is the function to be determined.

The zeroth-order deformation equation. Let yi0(t), i = 1, 2, 3, ..., n, be the initial approximation to the actual
solution of (3.1). Liao constructed zeroth deformation equations taking the auxiliary functions H (t) ( 6= 0) and
auxiliary parameter ~ (6= 0) as [10]

(1− q)Li[φi(t; q)− yi0(t)] = q~H (t)Ni[φi(t; q)], i = 1, 2, 3, ..., n, (3.3)

subject to the following conditions:

φi(0; q) = ai, i = 1, 2, 3, ..., n, (3.4)

where φi(t; q) are unknown functions and Li are the linear operators.
When q = 0, Eq. (3.3) becomes φi(t; 0) = yi0(t), and at q=1, it changes to φi(t; 1) = yi(t). So as the q varies from

0 to 1, the function φi(t; q) varies from the initial approximation yi0(t) to the actual solution yi(t), i = 1, 2, 3, ..., n.
Defining the mth order deformation derivatives,” with ”The mth order deformation derivative is defined as follows:

yim(t) =
1

m!

∂mφi(t; q)

∂qm
, i = 1, 2, 3, ..., n. (3.5)

Expanding φi(t; q) using the Taylor series with respect to q, for i = 1, 2, 3, ..., n, we get

φi(t; q) = yi0(t) +

∞∑
m=1

yim(t)qm, i = 1, 2, 3, ..., n. (3.6)

As we know, at q = 1, φi(t; q) becomes the required solution. Therefore, Eq. (3.6) at q=1 turns into

φi(t; 1) = yi(t) = yi0(t) +

∞∑
m=1

yim(t), i = 1, 2, 3, ..., n. (3.7)

Similarly, the equation for mth order deformation is provided by

L [yim(t)− χmyim−1
(t)] = ~H (t)Ri,m(yim−1

(t)), i = 1, 2, 3, ..., n, (3.8)

where

χm =

{
0, if m ≤ 1,

1, otherwise,
(3.9)

and

Ri,m(yim−1
(t))) =

1

(m− 1)!

∂m−1[N [φi(t; q)]]

∂qm−1
, i = 1, 2, 3, ..., n. (3.10)

Thus, yi1(t), yi2(t), yi3(t), and so on can be obtained from solving Eq. (3.8). The mth order approximation of yi(t)
[16–18] is given by

yi(t) =

m∑
m=0

yim(t). (3.11)
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As a result, Eq. (3.11) is the semi-analytical solution of (3.1).
It is worth noting that the approach described above can be used to solve fractional differential equations. However,

in a differential equation of non-fractional order, the inverse of the linear operator will be integration, whereas in a
differential equation of fractional order, it will be a fractional integration

3.2. The Haar wavelet technique. Consider the following system of n differential equations:
y
′

1(x) = f1(t, y1(x), ..., yn(x)),

y
′

2(x) = f2(t, y1(x), ..., yn(x)),
...

y
′

n(x) = fn(t, y1(x), ..., yn(x)),

(3.12)

with initial conditions yk(0)=αk, where k = 1, 2, ..., n. To find the Haar wavelet solution of this system of ODEs. We
find the collocation points as

xl = 0.5(x̃l−1 + x̃l), l = 1, 2, ..., 2M,

where

x̃l = a+ l∆x, l = 0, 1, 2, ..., 2M.

Now, the Haar wavelet approximation of (3.12) can be written as

y
′

k(x) =

2M∑
i=1

aki hi(x). (3.13)

Integrating (3.13) with respect to x from 0 to x, we get

yk(x) = yk(0) +

2M∑
1=1

aki P1,i(x),

yk(x) = αk +

2M∑
1=1

aki P1,i(x), (3.14)

where P1,i is the first operational matrix of integration. Substituting the Eqs. (3.13) and (3.14) in (3.12) and replacing
x by xl, then the diabetes model reduces to a system of nonlinear algebraic equations as follows:

F1(a1
1, a

1
2, ..., a

1
2M , a

2
1, a

2
2, ..., a

2
2M , ..., a

n
1 , a

n
2 , ..., a

n
2M ) = 0,

F2(a1
1, a

1
2, ..., a

1
2M , a

2
1, a

2
2, ..., a

2
2M , ..., a

n
1 , a

n
2 , ..., a

n
2M ) = 0,

...

Fn(a1
1, a

1
2, ..., a

1
2M , a

2
1, a

2
2, ..., a

2
2M , ..., a

n
1 , a

n
2 , ..., a

n
2M ) = 0.

(3.15)

In order to determine the values of the Haar coefficients aki , the Newton-Raphson technique was taken into consider-
ation. In the event when aki is the initial guess and the slope intercept point is aki+1, the Taylor series expansion of
(3.15) may be expressed as

F1,i+1 = F1,i + (ak1,i+1 − ak1,i)
∂F1,i

∂ak1
+ (ak2,i+1 − ak2,i)

∂F1,i

∂ak2
+, ...,+(ak2M,i+1 − ak2M,i)

∂F1,i

∂ak2M
, (3.16)

where k=1,2,3,...,n. Applying the Taylor expansion similarly for F2, F3, F4, ..., Fn, and generalizing for n equations,
we get

∂Fk,i
∂ak1

ak1,i+1 +
∂Fk,i
∂ak2

ak2,i+1+, ...,+
∂Fk,i
∂ak2M

ak2M,i+1 = −Fk,i + ak1,i
∂Fk,i
∂ak1

+ ak2,i
∂Fk,i
∂ak2

+, ...,+ak2M,i

∂Fk,i
∂ak2M

. (3.17)
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The equations in (3.15) are represented by the first subscript k, and the function value at the current value (i) or the
next value (i+ 1) is indicated by the second subscript. Eq. (3.17) can be represented in matrix notation as

[J ][aki+1] = −[F ] + [J ][aki ], (3.18)

where the partial derivatives evaluated at i are written as the Jacobian matrix consisting of partial derivatives

[J ] =


∂F1,i

∂ak1

∂F1,i

∂ak2
· · · ∂F1,i

∂ak2M
∂F2,i

∂ak1

∂F2,i

∂ak2
· · · ∂F2,i

∂ak2M
... · · ·

...
∂Fn,i
∂ak1

∂Fn,i
∂ak2

· · · ∂Fn,i
∂ak2M

 . (3.19)

The initial and final values are expressed in vector form as

[aki ]T =
[
ak1,i ak2,i · · · ak2M,i

]
, [aki+1]T =

[
ak1,i+1 ak2,i+1 · · · akn,i+1

]
, and [F ]T =

[
F1,i F2,i · · · Fn,i

]
.

Multiplying the inverse of the Jacobian matrix to (3.18) yields

[aki+1] = [aki ]− [J ]−1[F ]. (3.20)

From (3.20), we get the Haar wavelet coefficients aki s. Using aki s in Eq. (3.14), we get the desired solution of the
diabetes model (3.12).

3.2.1. Implementing the HWT for the fractional model. Consider the general form of the fractional model
Dαy1(t) = f1(t, y1(t), ..., yn(t)),

Dαy2(t) = f2(t, y1(t), ..., yn(t)),
...

Dαyn(t) = fn(t, y1(t), ..., yn(t)),

(3.21)

with initial conditions yi(t) = βk, i = 1, 2, ...., n, where Dα represents the Caputo differential operator. The Haar
wavelet approximation is given as

dyk(t)

dt
=

m∑
i=1

aki hm(t), (3.22)

integrating the above equation with respect to t from 0 to t, we get

yk(t) = βk +

m∑
i=1

akiQ
1hm(t), where 1 ≤ k ≤ n, (3.23)

where Q1Hm(t) is the first-order operational matrix of integration. Fractionally differentiating (3.23) with respect to
t of order α, where α ∈ (0, 1), yields

dαyk(t)

dtα
=

dα

dtα
(βk) +

m∑
i=1

akiQ
1−αHm(t). (3.24)

Substituting (3.22), (3.23), and (3.24) in (3.21) and replacing t by collocation points tl given in section 3.2. Eq. (3.21)
reduces to a system of nonlinear algebraic equations as follows:

F1(a1
1, a

1
2, ..., a

1
m, a

2
1, a

2
2, ..., a

2
m, ..., a

n
1 , a

n
2 , ..., a

n
m) = 0,

F2(a1
1, a

1
2, ..., a

1
m, a

2
1, a

2
2, ..., a

2
m, ..., a

n
1 , a

n
2 , ..., a

n
m) = 0,

...

Fn(a1
1, a

1
2, ..., a

1
m, a

2
1, a

2
2, ..., a

2
m, ..., a

n
1 , a

n
2 , ..., a

n
m) = 0.

(3.25)
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By which we find the values of Haar coefficients aki ’s with the help of the Newton-Raphson method as follows: If the
initial guess of the root is aki and aki+1 is the point at which the slope intercepts, then the Taylor series expansion of
(3.25) can be written as

F1,i+1 = F1,i + (ak1,i+1 − ak1,i)
∂F1,i

∂ak1
+ (ak2,i+1 − ak2,i)

∂F1,i

∂ak2
+, ...,+(akm,i+1 − akm,i)

∂F1,i

∂akm
, (3.26)

where k=1,2,3,...,n. Applying the Taylor expansion similarly for F2, F3, F4, ..., Fn, and generalizing for n equations,
we get

∂Fk,i
∂ak1

ak1,i+1 +
∂Fk,i
∂ak2

ak2,i+1+, ...,+
∂Fk,i
∂akm

akm,i+1 = −Fk,i + ak1,i
∂Fk,i
∂ak1

+ ak2,i
∂Fk,i
∂ak2

+, ...,+akm,i
∂Fk,i
∂akm

. (3.27)

The first subscript k identifies the equation or unknown function, while the second subscript indicates the iteration
step, either the current value (i) or the next value (i+ 1). Eq. (3.27) can be represented in matrix notation as

[J ][aki+1] = −[F ] + [J ][aki ], (3.28)

where the partial derivatives evaluated at i are written as the Jacobian matrix consisting of partial derivatives

[J ] =


∂F1,i

∂ak1

∂F1,i

∂ak2
· · · ∂F1,i

∂akm
∂F2,i

∂ak1

∂F2,i

∂ak2
· · · ∂F2,i

∂akm
... · · ·

...
∂Fn,i
∂ak1

∂Fn,i
∂ak2

· · · ∂Fn,i
∂akm

 .
The initial and final values are expressed in vector form as

[aki ]T =
[
ak1,i ak2,i · · · akm,i

]
,

[aki+1]T =
[
ak1,i+1 ak2,i+1 · · · akn,i+1

]
,

and

[F ]T =
[
F1,i F2,i · · · Fn,i

]
.

Multiplying the inverse of the Jacobian matrix to (3.28) results in

[aki+1] = [aki ]− [J ]−1[F ]. (3.29)

From (3.29) we get the Haar wavelet coefficients aki s. Using aki s in Eq. (3.23), we get the desired solution of the
fractional model (3.21).

4. Convergence Analysis

Theorem 4.1. As long as the series y0(t) +
∑∞
m=1 ym(t) converges, where ym(t) is governed by the higher-order

deformation equation number χm given by (3.9), it must be the exact solution [16].

Theorem 4.2. Let φ0, φ1, φ2, ... be the solution components of a given equation. The seris solution
∑∞
k=0 φk(t)

converges if ∃ 0 < γ < 1 such that ||φk+1|| ≤ γ||φk||, ∀ k ≥ k0 for some k0 ∈ N [19].

Theorem 4.3. Assume that the series solution
∑∞
k=0 φk(t) is convergent to the solution y(t); if the truncation series∑m

k=0 φk(t) is used as an approximation to the solution y(t), then the maximum absolute truncation error is estimated
as ||y(t)−

∑m
k=0 φk(t)|| ≤ 1

1−γ γ
m+1 ||φ0(t)|| [19].

Theorem 4.4. Suppose that the functions Dα
∗ uk(t) obtained by using Haar wavelets are the approximation of Dα

∗ u(t);
then we have an exact upper bound as follows:

||Dα
∗ u(t)−Dα

∗ uk(t)||E ≤
M

Γ(m− α).(m− α)

1

[1− 22(α−m)]
1
2

1

km−α
,
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where

||u(t)||E = (

∫ 1

0

u2(t)dt)
1
2 ),

[3].

5. Solution of the Fractional Ebola Virus Model

Consider the described Ebola virus model as follows:

DαS (t) = −aS (t)I (t) + bR(t)− cN,
DαI (t) = aS (t)I (t)− dI (t)− eI (t),

DαR(t) = eI (t)− bR(t),

DαZ (t) = dI (t) + cN, (5.1)

with initial conditions

S (0) = S0, I (0) = I0, R(0) = R0, Z (0) = Z0, (5.2)

where, S (t), I (t), R(t), and Z (t) are susceptible, infect, recovery and dead populations, respectively, and the rates
of infection, susceptibility, natural death, death from Ebola, and recovery, are denoted by a, b, c, d, and e, respectively,
and N is the number of people in the population at a given time. Here we examine the functions S (t), I (t), R(t),
and Z (t) taking the parameters a = 0.001, b = 0.002, c = 0.01, d = 0.006, e = 0.004, and N = 72. The initial data
taken as S (0) = 70, I (0) = 2, R(0) = 0, and Z (0) = 0. Applying the above-presented HAM to (5.1) and (5.2).
According to (3.3), the zeroth-order deformation is given by

(1− q)L1[φ1(t; q)−S0(t)] = q~H (t)[Dαφ1(t; q) + aφ1(t; q)φ2(t; q)− bφ3(t; q) + cN ],

(1− q)L2[φ2(t; q)−I0(t)] = q~H (t)[Dαφ2(t; q)− aφ1(t; q)φ2(t; q) + dφ2(t; q) + eφ2(t; q)],

(1− q)L3[φ3(t; q)−R0(t)] = q~H (t)[Dαφ3(t; q)− eφ2(t; q) + bφ3(t; q)],

(1− q)L4[φ4(t; q)−Z0(t)] = q~H (t)[Dαφ4(t; q)− dφ2(t; q)− cN ]. (5.3)

According to the condition (5.2), we choose the initial approximations as S0(t) = 70, I0(t) = 2, R0(t) = 0 and
Z0(t) = 0, taking the linear operator as Li = Dα with Li(Ci) = 0, i = 1, 2, 3, 4. Where Ci, i = 1, 2, 3, 4, are integral
constants with H (t) = 1. Therefore, mth order deformations are given by

Dα[Sm(t)− χmSm−1(t)] = ~R1,m(Sm−1(t)),
Dα[Im(t)− χmIm−1(t)] = ~R2,m(Im−1(t)),
Dα[Rm(t)− χmRm−1(t)] = ~R3,m(Rm−1(t)),
Dα[Zm(t)− χmZm−1(t)] = ~R4,m(Zm−1(t)),

(5.4)

subject to

Sm(0) = 0, Im(0) = 0, Rm(0) = 0, Zm(0) = 0, m ≥ 1, (5.5)

where

R1,m(Sm−1(t)) = Dα[Sm−1(t)] + a

m−1∑
j=0

Sj(t)Im−1−j(t)− bRm−1(t) + (1− χm)cN,

R2,m(Im−1(t)) = Dα[Im−1(t)]− a
m−1∑
j=0

Sj(t)Im−1−j(t) + dIm−1(t) + eIm−1(t),

R3,m(Rm−1(t)) = Dα[Rm−1(t)]− eIm−1(t) + bRm−1(t),

R4,m(Zm−1(t)) = Dα[Zm−1(t)]− dIm−1(t)− (1− χm)cN. (5.6)

Applying J α, the inverse of Dα, on either side of (5.4), we get

Sm(t) = χmSm−1(t) + ~J α[R1,m(Sm−1(t))] + C1,
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Im(t) = χmIm−1(t) + ~J α[R2,m(Im−1(t))] + C2,

Rm(t) = χmRm−1(t) + ~J α[R3,m(Rm−1(t))] + C3,

Zm(t) = χmZm−1(t) + ~J α[R4,m(Zm−1(t))] + C4, m ≥ 1. (5.7)

C1, C2, C3, and C4 are calculated using (5.5).
The HAM series up to the first ten terms when α = 0.25 and h = −1 is

S (t) = 70− 1.25772t0.25 − 0.00688763t0.5 − 0.000199874t0.75 − 1.81955× 10−6t1

+ 1.93713× 10−7t1.25 + 1.39952× 10−8t1.5 + 4.97401× 10−10t1.75 + 5.86626× 10−12t2

− 4.83915× 10−13t2.25 − 3.75761× 10−14t2.5,

I (t) = 2 + 0.132392t0.25 + 0.00555163t0.5 + 0.000147351t0.75 + 5.02804× 10−7t1

− 1.97261× 10−7t1.25 − 1.23124× 10−8t1.5 − 3.96751× 10−10t1.75 − 2.73935× 10−12t2+

5.03504× 10−13t2.25 + 3.37036× 10−14t2.5,

R(t) = 0.0088261t0.25 + 0.000523568t0.5 + 0.0000204034t0.75 + 5.04197× 10−7t1

+ 8.851× 10−10t1.25 − 6.74013× 10−10t1.5 − 3.95916× 10−11t1.75 − 1.21256× 10−12t2

− 6.69394× 10−15t2.25 + 1.55517× 10−15t2.5,

Z (t) = 1.1165t0.25 + 0.000812433t0.5 + 0.0000321197t0.75 + 8.12551× 10−7t1

+ 2.66268× 10−9t1.25 − 1.00876× 10−9t1.5 − 6.10587× 10−11t1.75 − 1.91435× 10−12t2

− 1.28948× 10−14t2.25 + 2.31735× 10−15t2.5.

The HAM series up to the first ten terms when α = 0.5 and h = −1 is

S (t) = 70.− 1.28635t0.5 − 0.006104t1 − 0.000118167t1.5 + 1.12335× 10−6t2

+ 1.59407× 10−7t2.5 + 4.94525× 10−9t3 + 3.0227× 10−11t3.5 − 3.57763× 10−12t4

− 1.56023× 10−13t4.5 − 2.16706× 10−15t5,

I (t) = 2.+ 0.135406t0.5 + 0.00492t1 + 0.0000818548t1.5 − 1.64866× 10−6t2

− 1.49246× 10−7t2.5 − 4.12324× 10−9t3 − 9.29438× 10−12t3.5 + 3.61476× 10−12t4

+ 1.39439× 10−13t4.5 + 1.56463× 10−15t5,

R(t) = 0.00902703t0.5 + 0.000464t1 + 0.0000141062t1.5 + 1.98874× 10−7t2

− 4.20803× 10−9t2.5 − 3.26004× 10−10t3 − 8.17125× 10−12t3.5 − 1.00978× 10−14t4

+ 6.63895× 10−15t4.5 + 2.37496× 10−16t5,

Z (t) = 1.14192t0.5 + 0.00072t1 + 0.0000222065t1.5 + 3.26438× 10−7t2

− 5.953× 10−9t2.5 − 4.95998× 10−10t3 − 1.27614× 10−11t3.5 − 2.70274× 10−14t4

+ 9.94454× 10−15t4.5 + 3.64932× 10−16t5.

The HAM series up to the first ten terms when α = 0.75 and h = −1 is

S (t) = 70− 1.24039t0.75 − 0.00459175t1.5 − 0.0000454916t2.25 + 1.46035× 10−6t3.

+ 5.8862× 10−8t3.75 + 5.56212× 10−10t4.5 − 1.67124× 10−11t5.25 − 6.00592× 10−13t6.

− 4.45029× 10−15t6.75 + 1.82285× 10−16t7.5,

I (t) = 2 + 0.130568t0.75 + 0.00370108t1.5 + 0.0000265559t2.25 − 1.56693× 10−6t3

− 5.31655× 10−8t3.75 − 3.89197× 10−10t4.5 + 1.77771× 10−11t5.25 + 5.54742× 10−13t6
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+ 3.15278× 10−15t6.75 − 1.88931× 10−16t7.5,

R(t) = 0.00870452t0.75 + 0.000349045t1.5 + 7.35587× 10−6t2.25 + 3.88812× 10−8t3

− 2.29545× 10−9t3.75 − 6.59329× 10−11t4.5 − 4.03462× 10−13t5.25 + 1.84643× 10−14t6

+ 5.13787× 10−16t6.75 + 2.52383× 10−18t7.5,

Z (t) = 1.10112t0.75 + 0.000541622t1.5 + 0.0000115798t2.25 + 6.76979× 10−8t3

− 3.40099× 10−9t3.75 − 1.01081× 10−10t4.5 − 6.612× 10−13t5.25 + 2.73858× 10−14t6

+ 7.83723× 10−16t6.75 + 4.12158× 10−18t7.5.

Additionally, the RKM and the HWT are used to resolve the above problem. Graphs and tables are used to explain
the results that were obtained. Tables 1 and 2 give the values of S (t) for integer and noninteger values of α. The
geometrical comparison of the HAM, RKM, and HTM solutions of S (t) is shown in Figure 1. The graphical depiction
of the HAM solution with various values of α of S (t) is shown in Figure 2. Figure 3 displays the error analysis of the
HAM, RKM, and HWT answers with the precise solution for S (t). Figure 4 compares the ND Solver, HAM, RKM,
and HTM solutions of I (t) geometrically. The HAM solution is graphically depicted with various values of α of I (t)
in Figure 5. Figure 6 depicts the error analysis of the I (t) solutions from the HAM, RKM, HWT, and ND Solvers.
Tables 3 and 4 contain numerical values of I (t) for the fractional and non-fractional values of α, respectively. Figures
7, 8, and 9 show the graphical representation of solutions obtained by different methods, solutions for different values
of α, and error analysis, respectively, for R(t), and the corresponding values are shown in Tables 5 and 6. Tables 7 and
8 display the values of Z (t) for integer and noninteger values of α, and their graphical representations, along with the
absolute errors, are represented in Figures 10, 11, and 12. The HAM calculations were computed using Mathematica
software.

Figure 13 shows the Ebola model’s nature with the varying infection rate. It shows that the infected, recovered, and
dead populations increase with the infection rate, whereas the susceptible population decreases as the rate of infection
increases. The characteristics of the Ebola model with varying rates of natural death are illustrated in Figure 15. It
demonstrates that while the susceptible, infected, and dead populations decrease as the rate of natural death rises, the
recovery population grows with the rate of natural death. The characteristics of the Ebola model, with its fluctuating
susceptibility rate, are seen in Figure 14. It demonstrates that while the recovery population declines as the rate of
susceptible rises, the populations of the susceptible, infected, and dead grow. Figure 16 shows the nature of the Ebola
model with the varying recovery rate. It shows that the infected and dead populations decrease with the increase in
the rate of recovery, but the susceptible and recovered populations increase as the rate of recovery increases.

Table 1. Comparison of solutions obtained from the ND Solver, HAM, HWT, and their absolute
errors (AE) with the ND Solver solution for integer order α = 1 of S (t).

t ND Solver HAM RKM HWT HAM Error RKM Error HWT Error

0 70 70 70 70 0 0 0

2 68.26646136 68.26646129 68.266462 68.26643796 6.2525×10−8 6.4422×10−7 2.34004×10−5

4 66.50506092 66.50506084 66.505062 66.50503436 7.5292×10−8 1.0833×10−6 2.6559×10−5

6 64.71477474 64.71477485 64.714776 64.71474512 1.1560×10−7 1.2643×10−6 2.9619×10−5

8 62.89482149 62.89482161 62.894824 62.89478857 1.2259×10−7 2.5095×10−6 3.2923×10−5

10 61.04471044 61.0447103 61.044713 61.04467394 1.3459×10−7 2.5648×10−6 3.6498×10−5

12 59.16428922 59.16428922 59.164292 59.1642496 5.0549×10−9 2.7764×10−6 3.9634×10−5

14 57.25379169 57.25379162 57.253795 57.2537489 7.1567×10−8 3.3131×10−6 4.2854×10−5

16 55.31387698 55.31387695 55.313881 55.3138312 3.4054×10−8 4.0206×10−6 4.5792×10−5

18 53.34566544 53.34566531 53.345670 53.3456169 1.3015×10−7 4.5559×10−6 4.8622×10−5

20 51.35076296 51.3507628 51.350768 51.35071189 1.6213×10−7 5.0361×10−6 5.1082×10−5
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Table 2. Comparison of the HAM and HWT solutions for different fractional values of α of S (t).

t
α = 0.25 α = 0.5 α = 0.75

HAM HWT HAM HWT HAM HWT

0 70 70 70 70 70 70

2 68.86055196 68.84302153 68.61379653 68.70546622 68.4117229 68.54300974

4 68.64232277 68.53664736 68.0310697 67.97827538 67.31141932 67.35769455

6 68.49549828 68.53807154 67.58031924 67.58450622 66.33454123 66.37581115

8 68.38164118 68.37879865 67.19779941 67.20553693 65.42691749 65.465631335

10 68.28732542 68.26733001 66.85882923 66.85511223 64.56548888 64.59894303

12 68.20612471 68.22056551 66.55075585 66.55309132 63.73768115 63.76964372

14 68.13441769 68.12386092 66.26606611 66.26655202 62.93568276 62.96585806

16 68.06994401 68.07014061 65.99986673 66.00050356 62.15422837 62.18322697

18 68.01118957 68.01935681 65.74876027 65.75005799 61.38956504 61.41781415

20 67.95708612 67.90528408 65.51027414 65.50807027 60.6389079 60.66565703
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Figure 1. Comparison of the ND
Solver solution with the HAM,
RKM, and HWT solutions for S (t).
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Figure 2. Graphical interpretation
of the HAM solutions (S (t)) at dif-
ferent values of α.

Table 3. Comparison of solutions obtained from the ND Solver, HAM, HWT, and their absolute
errors (AE) with the ND Solver solution for integer order α = 1 of I (t).

t ND Solver HAM RKM HWT HAM Error RKM Error HWT Error

0 2 2 2 2 0 0 0.

2 2.25109815 2.25109820 2.251098 2.25111735 5.2441×10−8 1.5468×10−7 1.9201×10−5

4 2.52488223 2.52488229 2.524882 2.52490396 6.0790×10−8 2.3705×10−7 2.1724×10−5

6 2.82192484 2.82192470 2.821923 2.82194893 1.4058×10−7 1.8413×10−6 2.4089×10−5

8 3.14254760 3.14254745 3.142546 3.14257425 1.5040×10−7 1.6032×10−6 2.6654×10−5

10 3.48677874 3.48677884 3.486777 3.48680818 1.0264×10−7 1.7448×10−6 2.9439×10−5

12 3.85431151 3.85431148 3.854309 3.85434325 2.5110×10−8 ,2.5096×10−6 3.1750×10−5

14 4.24446351 4.24446355 4.244460 4.24449761 3.6707×10−8 3.5153×10−6 3.4099×10−5

16 4.65614537 4.65614537 4.656142 4.65618151 1.1610×10−9 3.3745×10−6 3.6143×10−5

18 5.08783327 5.08783335 5.087829 5.08787132 8.3409×10−8 4.2721×10−6 3.8049×10−5

20 5.537553362 5.537553476 5.537549 5.53759294 1.1373×10−7 4.3620×10−6 3.9584×10−5
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Figure 3. Error analysis of the
HAM, RKM, and HWT solutions
(S (t)) with ND Solver solutions.
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Figure 4. Comparison of the ND
Solver solution with the HAM,
RKM, and HWT solutions for I (t).
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Figure 5. Graphical interpretation
of the HAM solutions (I (t)) at dif-
ferent values of α.
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Figure 6. Error analysis of the
HAM, RKM, and HWT solutions
(I (t)) with ND Solver solutions.
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Figure 7. Comparison of the ND
Solver solution with the HAM,
RKM, and HWT solutions for R(t).
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Figure 8. Graphical interpretation
of the HAM solutions (R(t)) at dif-
ferent values of α.
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Table 4. Comparison of the HAM and HWT solutions for different fractional values of α of I (t).

t
α = 0.25 α = 0.5 α = 0.75

HAM HWT HAM HWT HAM HWT
0 2 2 2 2 2 2
2 2.16657018 2.16853444 2.20284806 2.18850253 2.23152917 2.21276099
4 2.20024690 2.21551672 2.29385435 2.29989271 2.40360184 2.39505645
6 2.22323451 2.21736755 2.36662295 2.36541825 2.56438595 2.55609728
8 2.24124477 2.24151685 2.43001482 2.42829613 2.72048580 2.71214011
10 2.25628647 2.25912787 2.48745410 2.48728226 2.87455988 2.86651325
12 2.26932594 2.26738716 2.54069282 2.53979361 3.02797377 3.01977607
14 2.28090992 2.28231297 2.59076934 2.59012382 3.18151828 3.17321800
16 2.29138085 2.29139572 2.63835862 2.63771734 3.33568181 3.32721385
18 2.30096882 2.29990688 2.68392827 2.68322173 3.49077490 3.48209625
20 2.30983661 2.31662891 2.72781802 2.72756218 3.64699463 3.63820268

Table 5. Comparison of solutions obtained from the ND Solver, HAM, HWT, and their absolute
errors (AE) with the ND Solver solution for integer order α = 1 of R(t).

t ND Solver HAM RKM HWT HAM Error RKM Error HWT Error
0 0 0 0 0 0 0 0.

2 0.01695623 0.01695624 0.016956 0.01695788 3.9673×10−9 2.3656×10−7 1.6442×10−6

4 0.03593972 0.03593973 0.035940 0.03594161 5.6905×10−9 2.7299×10−7 1.8914×10−6

6 0.05712593 0.05712594 0.057126 0.05712809 9.4929×10−9 6.2464×10−8 2.1615×10−6

8 0.08069324 0.08069325 0.080693 0.08069569 1.0585×10−8 2.4204×10−7 2.4487×10−6

10 0.10682072 0.10682073 0.106821 0.10682347 1.2536×10−8 2.7967×10−7 2.7552×10−6

12 0.13568565 0.13568566 0.135686 0.13568873 1.1649×10−8 3.4348×10−7 3.0752×10−6

14 0.16746069 0.16746070 0.167461 0.16746410 1.3551×10−8 3.0794×10−7 3.4117×10−6

16 0.20231073 0.20231075 0.202311 0.20231449 1.3619×10−8 2.6342×10−7 3.7569×10−6

18 0.24038961 0.24038962 0.240389 0.24039372 1.8244×10−8 6.1148×10−7 4.1134×10−6

20 0.28183658 0.28183660 0.281836 0.28184105 1.8872×10−8 5.8263×10−7 4.4689×10−6

Table 6. Comparison of the HAM and HWT solutions for different fractional values of α of R(t).

t
α = 0.25 α = 0.5 α = 0.75

HAM HWT HAM HWT HAM HWT
0 0 0 0 0 0 0
2 0.01127650 0.01139717 0.01374021 0.01274621 0.01566637 0.01440047
4 0.01359692 0.01462846 0.02004201 0.02041390 0.02760471 0.02697983
6 0.01518844 0.01479964 0.02514037 0.02504810 0.03898377 0.03836340
8 0.01643963 0.01645463 0.02962416 0.02949592 0.05023647 0.04959877
10 0.01748744 0.01767844 0.03372060 0.03369383 0.06154038 0.06090756
12 0.01839787 0.01827097 0.03754579 0.03747386 0.07299020 0.07233326
14 0.01920829 0.01929986 0.04116844 0.04111295 0.08464408 0.08396548
16 0.01994216 0.01994457 0.04463317 0.04457857 0.09654113 0.09583609
18 0.02061522 0.02054685 0.04797084 0.04791257 0.10870933 0.10797443
20 0.02123865 0.02167831 0.05120384 0.05117410 0.12116961 0.12041016

Table 7. Comparison of solutions obtained from the ND Solver, HAM, HWT, and their absolute
errors (AE) with the ND Solver solution for integer order α = 1 of Z (t).

t ND Solver HAM RKM HWT HAM Error RKMError HWT Error
0 0. 0. 0 0 0 0 0.

2 1.46548425 1.46548425 1.465484 1.46548681 6.1166×10−9 2.5297×10−7 2.5548×10−6

4 2.93411711 2.93411712 2.934117 2.93412006 8.8114×10−9 1.1929×10−7 2.9427×10−6

6 4.40617448 4.40617450 4.406174 4.40617785 1.5491×10−8 4.8538×10−7 3.3679×10−6

8 5.88193766 5.88193768 5.881938 5.88194148 1.7226×10−8 3.3571×10−7 3.8202×10−6

10 7.36169010 7.36169011 7.361690 7.36169440 1.9410×10−8 9.9704×10−8 4.3028×10−6

12 8.84571361 8.84571362 8.845713 8.84571841 1.8521×10−8 6.1031×10−7 4.8093×10−6

14 10.33428411 10.33428413 10.334284 10.33428944 2.1316×10−8 1.0565×10−7 5.3424×10−6

16 11.82766691 11.82766693 11.827667 11.82767280 2.1597×10−8 9.0502×10−8 5.8914×10−6

18 13.32611167 13.32611170 13.326111 13.32611813 2.8483×10−8 6.7230×10−7 6.4598×10−6

20 14.82984709 14.82984712 14.829847 14.82985412 2.9522×10−8 9.1470×10−8 7.0293×10−6
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Figure 9. Error analysis of the
HAM, RKM, and HWT solutions
(R(t)) with ND Solver solutions.
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Figure 10. Comparison of the ND
Solver solution with the HAM,
RKM, and HWT solutions for Z (t).

Table 8. Comparison of the HAM and HWT solutions for different fractional values of α of Z (t).

t
α = 0.25 α = 0.5 α = 0.75

HAM HWT HAM HWT HAM HWT
0 0 0 0 0 0 0
2 0.96160134 0.97704683 1.16961518 1.09328504 1.34108155 1.22982879
4 1.14383338 1.23320743 1.65503392 1.70141798 2.25737411 2.22026914
6 1.26607875 1.22976124 2.02791743 2.02502740 3.06208904 3.02972814
8 1.36067441 1.36322985 2.34256160 2.33667100 3.80236023 3.77262978
10 1.43890065 1.45586369 2.61999609 2.62391160 4.498410848 4.4736361
12 1.50615147 1.49377634 2.87100554 2.86964120 5.16135487 5.13824693
14 1.56546408 1.57452621 3.10199610 3.10221119 5.79815487 5.77695843
16 1.61873297 1.61851908 3.31714149 3.31720051 6.41354867 6.39372307
18 1.66722637 1.66018944 3.51934061 3.51880769 7.01095071 6.99211515
20 1.71183860 1.75640868 3.71070399 3.71319343 7.59292784 7.57573011
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Figure 11. Graphical interpreta-
tion of the HAM solutions Z (t) at
different values of α.
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Figure 12. Error analysis of the
HAM, RKM, and HWT solutions
(Z (t)) with ND Solver solutions.
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Figure 13. The nature of the model with the increase in the rate of infection (a).
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Figure 14. The nature of the model with the increase in the rate of susceptibility (b).



CMDE Vol. 13, No. 3, 2025, pp. 783-801 799

c=0.01

c=0.05

c=0.1

0 2 4 6 8 10

0

10

20

30

40

50

60

70

Time (t)

S
u
s
c
e
p
ti
b
le
P
o
p
u
la
ti
o
n
(S

(t
))

c=0.01

c=0.05

c=0.1

0 2 4 6 8 10

2.0

2.5

3.0

3.5

Time (t)

In
fe
c
te
d
P
o
p
u
la
ti
o
n
(I

(t
))

c=0.01

c=0.05

c=0.1

0 2 4 6 8 10

0.00

0.02

0.04

0.06

0.08

0.10

Time (t)

R
e
c
o
v
e
ry
P
o
p
u
la
ti
o
n
(R

(t
))

c=0.01

c=0.05

c=0.1

0 2 4 6 8 10

0

10

20

30

40

50

60

70

Time (t)

D
e
a
th
P
o
p
u
la
ti
o
n
(Z

(t
))

Figure 15. The nature of the model with the increase in the rate of natural death (c).
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Figure 16. The nature of the model with the increase in the rate of recovery (e).

6. Conclusion

In this study, we discussed the Ebola virus model through three different methods, such as the homotopy analysis
method, the Haar wavelet technique, and the Runge-Kutta method. Here, we numerically analyzed susceptible,
infected, recovery, and dead populations and discussed the effect of different parameters. The homotopy analysis
method is a semi-analytical method that yields the analytical solution of a given model after some more deformations.
The Haar wavelet method is a numerical technique that solves the models numerically with the help of software. The
obtained solutions are numerically tabulated in Tables 1-8. Figures 1-12 show the performance of the methods, and
Figures 13-16 show the nature of the model with varying parameters. Here, the HAM consumes more time to yield
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solutions for the different models. Still, the HWT delivers the numerical results with less time, and the results are
compared with the ND Solver and Runge-Kutta method solutions. This study reveals that the HAM provides solutions
with high accuracy compared to other methods.
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