تعداد نشریات | 44 |
تعداد شمارهها | 1,301 |
تعداد مقالات | 15,910 |
تعداد مشاهده مقاله | 52,165,393 |
تعداد دریافت فایل اصل مقاله | 14,938,369 |
بررسی اثر جدایش لایه در پاسخ ستونهای ساندویچی تقویت شده با الیاف کامپوزیتی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 12، دوره 50، شماره 2 - شماره پیاپی 91، مرداد 1399، صفحه 103-112 اصل مقاله (1.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2020.9979 | ||
نویسندگان | ||
رضا سرایلو1؛ سعید رهنما* 2 | ||
1کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران | ||
2استادیار، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران | ||
چکیده | ||
پدیده جدایش لایه یکی از عیوبی است که در سازههای ساندویچی تقویت شده با الیاف کامپوزیتی اتفاق میافتد. از اینرو، در این مقاله کمانش، اثر جدایش و رشد جدایش در بارگذاری فشاری بررسی شده است. رشد جدایش توسط المانهای چسبنده به همراه کد نقص در نرم افزار المان محدود آباکوس مدل شده است. در این تحقیق جدایش و رشد جدایش بین پوستههای کامپوزیتی و هسته مورد بررسی قرار گرفته است. در این مدل، سه شبیهسازی انجام گرفته است و نتایج آن، با نتایج تحقیقات گذشته مقایسه شده است. مدل اول سازه بدون نقص، مدل دوم سازه با در نظر گرفتن نقص اولیه جدایش و بدون رشد آن، مدل سوم، سازه با در نظر گرفتن نقص اولیه جدایش و رشد آن میباشد. در مدل دوم و سوم جدایش اولیه با طولهای 25 و 50 میلیمتر در نظر گرفته شده است. نتایج در مدل دوم و سوم حاکی از دو مرحلهای بودن در نمودار نیرو- تغییر مکان است که وقوع کمانش محلی در محل جدایش را توجیه میکند. همانطور که انتظار میرفت افزایش طول جدایش اولیه باعث کاهش در بار کمانشی محلی و هم بار کمانشی کلی میشود. همچنین، بر خلاف تحقیقات گذشته با در نظر گرفتن رشد جدایش و استفاده از کد نقص در این پژوهش نتایج و نمودارهای نیرو- تغییر مکان به نتایج تجربی نزدیکتر شده است. | ||
کلیدواژهها | ||
کمانش سازههای ساندویچی؛ جدایش لایه؛ رشد تورق؛ چندلایههای کامپوزیتی | ||
مراجع | ||
[1] Deniz M.E., Ozdemir O., Ozen M., Karakuzu R., Failure Pressure and impact Response of Glass-Epoxy Pipes exposed to seawater. Composites, Part B, No. 53, pp. 355-361, 2013. [2] Isaac M.D., Ishai O., Engineering Mechanics of Composite Materials, Northwestern University, Evanston. IL, U.S.A, 1994. [3] Hosseini-Toudeshky H., Hosseini S., Mohammadi B., Buckling and Delamination Growth Analysis of Composite Laminates Containing Embedded Delaminations, Applied Composite Materials, No. 17, pp. 95-109, 2010. [4] Vaddake V., Carlsson L.A., Experimental Investigation of Compression Failure of Sandwich Specimens with Face/Core Debond, Composite, Part B, No. 35, pp. 583-590, 2004. [5] Mousa M.A., Uddin N., Global Buckling of Composite Structural Insulated Wall Panels, Materials and Design, No. 32, pp. 766-772, 2011. [6] Ji W., Waas A.M., Accurate Buckling Load Calculation of a Thick Orthotropic Sandwich Panel, Composites Science and Technolog, No. 72, pp.1134-1139, 2012. [7] Gaiotti M., Rizzo C., Finite Element Modeling Strategies for Sandwich Composite Laminated Under Compressive loading, Ocean Engineering, No. 63, pp. 44-51, 2013. [8] Vosoughi A.R., Darabi A., Anjabin N., Topal U., A Mixed Finite Element and Improved Genetic Algorithm Method for Maximizing Bbuckling Load of Stiffened Laminated Composite Plates, Aerospace Science and Technology, No. 70, pp. 378-387, 2017. [9] Chen X., Wu Zh., Nie G., Weaver P., Buckling Analysis of Variable Angle Tow Composite Plates with a Through-the-Width or an Embedded Rectangular Delamination, International Journal of Solids and Structures, pp. 1-15, 2018. [10] Aydogdu M., Aksencer T., Buckling of Cross-Ply Composite Plates with Linearly Varying In-Plane [11] Wang D., Abdalla M.M., Global and Local Buckling Analysis of Grid-Stiffened Composite Panels, Composite Structures, No. 119, pp. 767-776, 2015. [12] Giuliese G., Palazzetti R., Moroni F., Zucchelli A., Pirondi A., Cohesive Zone Modelling of Delamination Response of a Composite Laminate with Interleaved nylon 6.6 nanofibers, Composites Part B, No. 78, pp. 384-392, 2015. [13] Mohammadi B., Shahabi F., On Computation Modeling of Postbuckling Behavior of Composite Laminates Containing Single and Multiple Through the Width Delaminations Using Interface Elements with Cohesive Law, Engineering Fracture Mechanics, 2015. [14] Knox E.M., Cowling M.J., Hashim S.A., Fatigue Performance of Adhesively Bonded Connections in GRE Pipes, International Journal of Fatigue, No. 22, pp. 513-519, 2000. [15] Tarfaoui M., Gning P.B., Hamitouche L., Dynamic Response and Damage Modeling of Glass/Epoxy Tubular Structures, Numerical investigation, Composites Part A, No. 39, pp. 1-12, 2008. [16] Plantema F.J., The Bending and Buckling of Sandwich Beams-Plates and Shells, Sandwich Construction, John Wiley and Sons, New York, 1966. [17] Gaiotti M., Rizzo C.M., Branner K., Berring P., Finite Elements Modeling of Delaminations in Composite Laminates, Advances in Marine Structures, Proceedings of the MARSTRUCT International Conference on Marine Structures, Hamburg, March 28-30, 2011 [18] Chapelle D., Bathe K.J., The Finite Element Analysis of Shells- Fundamentals, Springer-Verlag, Berlin, 2003. [19] Matthews F.L., Davies G.A.O., Hitchings D., Soutis C., Finite Element Modelling of Composite Materials and Structures, Woodhead Publishing Ltd, Cambridge, pp. 3-5, 2000. [20] Gaiotti M., Rizzo C., Finite Element Modeling Strategies for Sandwich Composite Laminated Under Compressive Loading, Ocean Engineering, No. 63, pp. 44-51, 2013. [21] Vaddake V., Carlsson L.A., Experimental Investigation of Compression Failure of Sandwich Specimens with Face/Core Debond, Composite Part B, No. 35, pp. 583-590, 2004. [22] Rodriguez-Ramos R., De Medeiros R., Guinovart-Diaz R., Bravo-Castillero J., Otero J.A., Tita V., Different Approaches for Calculating the Effective Elastic Properties Incomposite Materials Under Imperfect Contact Adherence, Composite Structures, No. 99, pp. 264-275, 2013. [23] Kaw A.K., Mechanics of Composite Materials, Second Edition. Taylor and Francis Group, 2006. [24] Yap C.W., Chai G.B., Song J., Joshi S.C., Upper and Lower Bound Buckling Load of Perfect and Delaminated Fiber-Reiforced Composite Columns, Composite Structure، No. 122, pp. 376-389, 2015. [25] Riccio A., Scaramuzzino F., Perugini P., Embedded delamination growth in composite panels under compressive load. Composites Part B, No. 32, pp. 209-218, 2001. [26] Gozluklu B., Coker D., Modeling of The Dynamic Delamination of L-Shaped Unidirectional Laminated Composites, Composite Structures, No. 94, pp. 1430-1442, 2012. [27] Yamanaka T., Ghiasi H., Heidari-Rarani M., Lessard L., Feret V., Hubert P., Multiscale Finite Element Analysis of Mode I Delamination Growth in a Fabric Composite, Composite Structures, No. 133, pp. 157-165, 2015. | ||
آمار تعداد مشاهده مقاله: 218 تعداد دریافت فایل اصل مقاله: 202 |