تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,899 |
تعداد دریافت فایل اصل مقاله | 15,213,922 |
بررسی کارایی یک مبادله کن گرمایی پوسته-لوله با بافل میلهای با استفاده از دینامیک سیالات محاسباتی و نرم افزار HTRI | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 8، دوره 50، شماره 2 - شماره پیاپی 91، مرداد 1399، صفحه 67-76 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2020.9976 | ||
نویسندگان | ||
حسین حسن نیا1؛ اصغر علیزاده داخل* 2 | ||
1دانشجوی دکتری، گروه شیمی و مهندسی شیمی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران. | ||
2استادیار، گروه شیمی و مهندسی شیمی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران. | ||
چکیده | ||
یک مبادله کن گرمایی پوسته- لوله با بافل میلهای با استفاده از نرم افزار HTRI و روش دینامیک سیالات محاسباتی (CFD) شبیه سازی گردید. نتایج بهدست آمده از هر دو مدلسازی با دادههای تجربی در دسترس مقایسه شد. همچنین اثر فاصله بافلها و سرعت جریان سیال سرد بر کارایی مبادله کن گرمایی مورد بررسی قرار گرفت. نتایج حاصل نشان داد که کاهش فاصله بافلها سبب افزایش انتقال گرما در مبادله کن میشود. با این حال، کم کردن بیش از حد فاصله بافلها میتواند موجب کاهش قابل توجه انتقال گرما گردد. در مقایسه دو روش بهکار گرفته شده برای شبیه سازی مبادله کن گرمایی پوسته- لوله با بافل میلهای، میتوان گفت استفاده از نرم افزار HTRI آسانتر و سریعتر از روش CFD است و پاسخهای قابل قبولی را بهدست میدهد. از طرف دیگر دقت نتایج حاصل از CFD بیشتر است، همچنین جزئیات پروفایلهای دما و سرعت سیال در داخل مبادله کن، قابل محاسبه و تجزیه و تحلیل است. نتایج این تحقیق میتواند گامی موثر در توسعه کاربرد این نوع مبادله کن و بازطراحی آن باشد. | ||
کلیدواژهها | ||
مبادله کن گرمایی؛ بافل میلهای؛ دینامیک سیالات محاسباتی؛ HTRI | ||
مراجع | ||
[[1]] Dong, Q. W., Wang Y. Q., Liu M. S., Numerical and Experimental Investigation of Shell Side Characteristics for ROD Baffle Heat Exchanger, Applied Thermal Engineering, Vol. 28, No. 7, pp. 651-660, 2008.
[[1]] Yongqing W., Xin G., Ke W., Qiwu D., Numerical Investigation of Shell-Side Characteristics of H-Shape Baffle Heat Exchanger, Procedia Engineering, Vol. 18, pp. 53-58, 2011.
[[1]] Galeazzo F. C. C., Miura R. Y., Gut J. A. W., Tadini C. C., Experimental and Numerical Heat Transfer in a Plate Heat Exchanger, Chemical Engineering Science, Vol. 61, No.21, pp. 7133-7138, 2006.
[[1]] Maakoul A. E., Laknizi A., Saadeddine S., Metoui M. E., Meziane M., Abdellah A. B., Numerical Comparison of Shell-Side Performance for Shell and Tube Heat Exchangers with Trefoil-Hole, Helical and Segmental Baffles, Applied Thermal Engineering, Vol. 109, pp. 175-185, 2016.
[[1]] Shahril S. M., Quadir G. A., Amin N. A. M., Badruddin I. A., Thermo Hydraulic Performance Analysis of a Shell-and-Double Concentric Tube Heat Exchanger Using CFD, International Journal of Heat and Mass Transfer, Vol. 105, pp. 781-798, 2017.
[[1]] Darvish Damavandi M., Forouzanmehr M., Safikhani H., Modeling and Pareto Based Multi-Objective Optimization of Wavy Fin-and-Elliptical Tube Heat Exchangers Using CFD and NSGA-II Algorithm, Applied Thermal Engineering, Vol. 111, pp. 325-339, 2017.
[[1]] Yaïci W., Ghorab M., Entchev E., 3D CFD Study of the Effect of Inlet Air Flow Maldistribution on Plate-Fin-Tube Heat Exchanger Design and Thermal–Hydraulic Performance, International Journal of Heat and Mass Transfer, Vol. 101, pp. 527-541, 2016.
[[1]] Ambekar A. S., Sivakumar R., Anantharaman N., Vivekenandan M., CFD Simulation Study of Shell and Tube Heat Exchangers with Different Baffle Segment Configurations, Applied Thermal Engineering, Vol. 108, pp. 999-1007, 2016.
[[1]] Wang X., Zheng N., Liu P., Liu Zh., Liu W., Numerical Investigation of Shell Side Performance of a Double Shell Side Rod Baffle Heat Exchanger, International Journal of Heat and Mass Transfer, Vol. 108, Part B, pp. 2029-2039, 2017.
[[1]] Patel S. K., Mavani A. M., Shell & Tube Heat Exchanger Thermal Design with Optimization of Mass Flow Rate and Baffle Spacing, International Journal of Advanced Engineering Research and Studies, Vol. 2, Issue I, pp. 130-135, 2012.
[[1]] Sahajpal S., Shah P. D., Thermal Design of Ammonia Desuperheater-Condenser and Comparative Study with HTRI, Procedia Engineering, Vol. 51, pp. 375-379, 2013.
[[1]] Ayub Z. H., A New Chart Method for Evaluating Single-Phase Shell Side Heat Transfer Coefficient in a Single Segmental Shell andTube Heat Exchanger, Applied Thermal Engineering, Vol. 25, Issues 14-15, pp. 2412-2420, 2005.
[[1]] Leoni G. B., Klein T. S., Medronho R. D. A., Assessment with Computational Fluid Dynamics of the Effects of Baffle Clearances on the Shell Side Flowin a Shell and Tube Heat Exchanger, Applied Thermal Engineering, Vol. 112, pp. 497-506, 2017.
[[1]] Shrikant A. A., Sivakumar R., Vivekanandan M., Comparison of Shell and Tube Heat Exchanger Using Theoretical Methods, HTRI, ASPEN and SOLIDWORKS Simulation Soft Wares, International Journal of Engineering Research and Application, Vol. 6, Issue 3, Part-5, pp. 99-107, 2016.
[[1]] Qiu Y., Li M. J., Wang W. Q., Du B. C., Wang K., An Experimental Study on the Heat Transfer Performance of a Prototype Molten-Salt Rod Baffle Heat Exchanger for Concentrated Solar Power, energy, Vol. 156, pp. 63-72, 2018.
[[1]] Yu C., Ren Zh., Zeng M., Numerical Investigation of Shell-Side Performance for Shell and Tube Heat Exchangers with Two Different Clamping Type Anti-Vibration Baffles, Applied Thermal Engineering, Accepted Manuscript, 2018
[[1]] Chmielewski, M., Gieras, M., Three-zonal Wall Function for k-epsilon Turbulence Models, Computational Methods in Science and Technology, Vol. 19, No. 2, pp. 107-114, 2013.
[[1]] ANSYS Inc., Modeling Turbulent Flows, www.fluentusers.com, Introductory Fluent Training, 2006. | ||
آمار تعداد مشاهده مقاله: 298 تعداد دریافت فایل اصل مقاله: 344 |