تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,485,374 |
تعداد دریافت فایل اصل مقاله | 15,212,998 |
Semi-Algebraic mode analysis for finite element discretisations of the heat equation | ||
Computational Methods for Differential Equations | ||
مقاله 9، دوره 9، شماره 1، فروردین 2021، صفحه 146-158 اصل مقاله (316.9 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2019.32018.1549 | ||
نویسندگان | ||
Noora Habibi* 1؛ Ali Mesforush1؛ Francisco Gaspar J. L.2؛ Carmen Rodrigo3 | ||
1Faculty of Applied Mathematics, Shahrood University Of Technology, P.O. Box 3619995161, Shahrood, Iran. | ||
2Department of Applied Mathematics, Science Faculty, University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain. | ||
3Department of Applied Mathematics, School of Engineering and Architecture, University of Zaragoza, Maria de Luna, 3, 50018, Zaragoza, Spain. | ||
چکیده | ||
In this work, a semialgebraic mode analysis (SAMA) is proposed for investigating the convergence of a multigrid waveform relaxation method applied to the Finite Element (FE) discretization of the heat equation in two and three dimensions. This analysis for finite element methods is more involved and more general than that for Finite Difference (FD) discretizations, since mass matrix must be considered. The proposed analysis results in a very useful tool to study the behaviour of the multigrid waveform relaxation method depending on the parameters of the problem. | ||
کلیدواژهها | ||
Finite element method؛ Waveform relaxation method؛ Multigrid technique؛ Semi-algebraic mode analysis | ||
آمار تعداد مشاهده مقاله: 484 تعداد دریافت فایل اصل مقاله: 387 |