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Abstract In this study, we investigate the first order linear fuzzy differential equations with
fuzzy variable coefficients. Appearance of the multiplication of a fuzzy variable co-

efficient by an unknown fuzzy function in linear differential equations persuades us
to employ the concept of the cross product of fuzzy numbers. Mentioned product
overcomes to some difficulties we face to in the case of the usual product obtained by

Zadeh’s extension principle. Under the cross product, we obtain the explicit fuzzy
solutions for a fuzzy initial value problem applying the concept of the strongly gener-
alized differentiability. Finally, some examples are given to illustrate the theoretical
results. The obtained numerical results are compared with other approaches in the

literature for similar parameters.
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1. Introduction

Many of the differential equations that describe real natural phenomena are linear
differential equations. They arise in the field of biology, mechanics, heat, electricity,
interaction between neurons, population models, and growth model. In the real world,
some information on physical phenomena are uncertain and imprecise. The concept
of interval and fuzzy differential equations are born when the uncertainty comes in
modeling on a problem with differential equations. Many studies have been done by
several authors in the theory of interval, fuzzy differential equations and fully fuzzy
linear systems (see e.g. [1, 4, 5, 7, 12, 13, 17]).
There are different approaches to interpret the concept of a solution to first order
linear fuzzy differential equations (see e.g. [8, 10, 11, 14, 15, 16, 18]).
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In [8], the authors presented a variation of constants formulas for fuzzy initial value
problem of the following first order linear fuzzy differential equations

y′(t) = a(t) · y(t) + b(t), (1.1)

where a is a real function and b is a fuzzy function. In [16], the authors generalized the
results of [8] and they investigated the analytic solutions of the equation (1.1) with
more cases. In the mentioned papers, strongly generalized differentiability concept
introduced in [6, 7], have been used. As we observe, the equation (1.1) involves the
term a · y. In the case that a is a fuzzy function, we face to the interpretation of the
product of two fuzzy numbers. The definition of product of fuzzy numbers are based
on Zadeh’s extension principle. Some researches have concentrated on linear fuzzy
differential equations with fuzzy variable coefficients under the usual product[10, 15].
Using the definition of the usual product of fuzzy numbers, we arrive at

[a · y]r = [min{a−
r y

−
r , a−

r y
+
r , a+

r y
−
r , a+

r y
+
r },max{a−

r y
−
r , a−

r y
+
r , a+

r y
−
r , a+

r y
+
r }].

This shows that the usual product formula based on Zadeh’s extension principle
is not practical and applicable in this case. To apply this product to linear fuzzy
differential equations, there are some difficulties which to overcome them it appears
to have several limitations and to be very restrictive. Recently, a new definition
of product so-called the cross product of fuzzy numbers, was introduced in [9] and
studied in [2, 6]. This concept allows us to solve the above mentioned shortcomings.
From the theoretical and numerical point of view, there are some studies which apply
the concept of the cross product for some problems [2, 11, 18]. In [2], the authors have
been applied the concept of the cross product to the fuzzy transport equation with
fuzzy coefficients. In [11], a numerical solution (Euler method) and in [18] Runge-
Kutta Fehlberg method for solving first order fully fuzzy differential equations in the
form y′(t) = a · y(t), y(0) = y0, were considered.
These motivate us to use the cross product instead of the product obtained by Zadeh’s
extension principle in order to gain analytical solutions for linear fuzzy differential
equations (1.1) and other alternative formats of Problem (1.1).
The structure of the present study is as follows. In Section 2, we give a brief review of
definitions and calculus related to fuzzy numbers. In Section 3, we present some results
on the calculus of fuzzy function. We apply our approach to the first order linear
fuzzy differential equations and construct the analytical solutions of the equation
associated with the uncertainty of data in Section 4. Finally, the applicable examples
and comparison results with other approaches in the literature are given in Section 5.

2. Preliminaries of fuzzy numbers

The space of fuzzy numbers is denoted by RF . For 0 < α ≤ 1, α-cuts of u ∈ RF is
defined by

[u]α = {x ∈ R | u(x) ≥ α}
with [u]α = [u−

α , u
+
α ]. We denote Core(u) = [u]1 and Supp(u) = [u]0 = {x ∈ R;u(x) > 0}.

Recall that the triangular and the trapezoidal fuzzy numbers u, v are denoted by
u =< a, b, c > and v =< a, b, c, d > respectively. For u, v ∈ RF , λ ∈ R, we define the
addition u+v and scalar multiplication λu as [u+v]α = [u]α+[v]α and [λu]α = λ[u]α,
where [u]α + [v]α and λ[u]α mean the usual addition of two intervals of R and the
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usual product between a scalar and an interval of R respectively.
If u and v are two fuzzy numbers, then the usual product w = u · v is defined based
on Zadeh’s extension principle by [w]α = [w−

α , w
+
α ], where for every α ∈ [0, 1]

w−
α = min{u−

α v
−
α , u

−
α v

+
α , u

+
αv

−
α , u

+
αv

+
α },

and

w+
α = max{u−

α v
−
α , u

−
α v

+
α , u

+
αv

−
α , u

+
αv

+
α }.

If u ∈ RF , then we have its length as Diam(u) = u+
0 − u−

0 . Let u, v ∈ RF , if there
exists a unique fuzzy number w ∈ RF such that v + w = u, then w is called the
H-difference of u, v and denoted by u⊖ v (see e.g. [6]).

Definition 2.1. [6] Given two fuzzy numbers u, v ∈ RF , the generalized Hukuhara
difference (gH-difference, for short) is the fuzzy number w, if it exists, such that

u⊖gH v = w ⇔
{

(i) u = v + w
or (ii) v = u− w.

Definition 2.2. [6, 9] We will say that a fuzzy number u is positive if for the lower
endpoint of its core we have u−

1 > 0. Also we call a fuzzy number negative if u+
1 < 0.

The set of positive (negative) fuzzy numbers is denoted by R+
F (R

−
F ).

Proposition 2.3. [6, 9] If u and v are positive fuzzy numbers, then w = u⊙v defined
by wα = [w−

α , w
+
α ], where

w−
α = u−

α v
−
1 + u−

1 v
−
α − u−

1 v
−
1 ,

and

w+
α = u+

αv
+
1 + u+

1 v
+
α − u+

1 v
+
1

for every α ∈ [0, 1], is a positive fuzzy number.

The above definition is extended to the negative fuzzy numbers as follows.

Proposition 2.4. [6, 9] Let u and v be two fuzzy numbers.

(1) If u is positive and v is negative we define

u⊙ v = −(u⊙ (−v)),

which is a negative fuzzy number.
(2) If u is negative and v is positive we define

u⊙ v = −((−u)⊙ v),

which is a negative fuzzy number.
(3) If u and v are negative we define

u⊙ v = ((−u)⊙ (−v)),

which is a positive fuzzy number.

Definition 2.5. [6, 9] The binary operation introduced as above is called the cross
product of fuzzy numbers.
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3. Calculus of fuzzy number valued functions

For convenience, we will hereafter recall a fuzzy number valued function f : (a, b) →
RF by a fuzzy function. In this paper, for the integral concept, we will use the
fuzzy Riemann integral ( see e.g. [6]). If g : [a, b] → RF is an integrable fuzzy
function such that [g(t)]α = [(g(t))−α , (g(t))

+
α ], then the boundary functions (g(t))−α

and (g(t))+α are integrable and [
∫ b

a
g(t)dt]α = [

∫ b

a
(g(t))−αdt,

∫ b

a
(g(t))+αdt]. In the special

case, if we consider a triangular fuzzy function g : (a, b) → Rτ such that g(x) =<
gl(t), gc(t), gr(t) >, then∫ b

a

g(t)dt =<

∫ b

a

gl(t)dt,

∫ b

a

gc(t)dt,

∫ b

a

gr(t)dt > .

Definition 3.1. [6, 7] Let f : (a, b) → RF and t0 ∈ (a, b). We say g is generalized
differentiable at t0, if there exists an element f ′(t0) ∈ RF , such that
(i) for all h > 0 sufficiently small, there exist f(t0 + h)⊖ f(t0), f(t0)⊖ f(t0 − h) and
the limits

lim
h↘0

f(t0 + h)⊖ f(t0)

h
= lim

h↘0

f(t0)⊖ f(t0 − h)

h
= f ′(t0),

or
(ii) for all h > 0 sufficiently small, there exist f(t0)⊖ f(t0 +h), f(t0 −h)⊖ f(t0) and
the limits

lim
h↘0

f(t0)⊖ f(t0 + h)

−h
= lim

h↘0

f(t0 − h)⊖ f(t0)

−h
= f ′(t0),

or
(iii) for all h > 0 sufficiently small, there exist f(t0)⊖ f(t0+h), f(t0)⊖ f(t0−h) and
the limits

lim
h↘0

f(t0)⊖ f(t0 + h)

−h
= lim

h↘0

f(t0)⊖ f(t0 − h)

h
= f ′(t0),

or
(iv) for all h > 0 sufficiently small, there exist f(t0+h)⊖ f(t0), f(t0−h)⊖ f(t0) and
the limits

lim
h↘0

f(t0 + h)⊖ f(t0)

h
= lim

h↘0

f(t0 − h)⊖ f(t0)

−h
= f ′(t0).

Lemma 3.2. [6] Let f : [a, b] → RF be a continuous fuzzy function. Then F (x) =∫ x

a
f(t)dt is (i)-differentiable and we have F ′(x) = f(x).

The following lemma states the derivative of the summation and Hukuhara differ-
ence of f and g for which f and g are fuzzy function.

Lemma 3.3. [3, 6, 8, 16] Let f, g : (a, b) → RF are generalized differentiable at
x ∈ (a, b). Then the differentiability of f +g and f ⊖g are as in Table 1 provided that
the involving H-differences exist.
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Table 1. The differentiability of f + g and f ⊖ g.
Case Diff of Diff of Diff of (f + g)′ Diff of (f ⊖ g)′

f g f + g f ⊖ g

1 (i) (i) (i) f ′(x) + g′(x) (i) f ′(x)⊖ g′(x)

2 (i) (ii) (i) f ′(x)⊖ (−1)g′(x) (i) f ′(x) + (−1)g′(x)

3 (ii) (i) (ii) f ′(x)⊖ (−1)g′(x) (ii) f ′(x) + (−1)g′(x)

4 (ii) (ii) (ii) f ′(x) + g′(x) (ii) f ′(x)⊖ g′(x)

The following lemma states the derivative of a fuzzy function multiplied by a crisp
function. The interpretation of product is based on Zadeh’s extension.

Lemma 3.4. [8] Let f : R → R and g : R → RF be two differentiable functions. Then
the differentiability of fg is as in Table 2 provided that the involving H-differences
exist.

Table 2. The differentiability of f · g.
Case The sign of Diff of g Diff of f · g (f · g)′

f(x)f ′(x)

1 > 0 (i) (i) f ′(x) · g(x) + f(x) · g′(x)
2 < 0 (i) (i) f(x) · g′(x)⊖ (−1)f ′(x) · g(x)
3 < 0 (i) (ii) f ′(x) · g(x)⊖ (−1)f(x) · g′(x)
4 > 0 (ii) (ii) f(x) · g′(x)⊖ (−1)f(x) · g′(x)
5 > 0 (ii) (i) f ′(x) · g(x)⊖ (−1)f(x) · g′(x)
6 < 0 (ii) (ii) f ′(x) · g(x) + f(x) · g′(x)

4. Linear fuzzy differential equations with fuzzy coefficient

In this section, we consider the following three fuzzy initial value problems of linear
fuzzy differential equations with fuzzy variable coefficients{

y′(t) = a(t)⊙ y(t) + b(t), (I)
y(t0) = y0,{
y′(t) + (−b(t)) = a(t)⊙ y(t), (II)
y(t0) = y0,{
y′(t) + (−a(t))⊙ y(t) = b(t), (III)
y(t0) = y0,

where a, b : [t0, T ) → RF , T > t0 and y0 ∈ RF .
It is worth noting that although the above problems are equivalent in the crisp version,
they are different in the fuzzy version. Moreover, the above problems are generaliza-
tion of the problems mentioned in [8] for which a(t) is a real function. In the above
problems, we have applied the concept of the cross product instead of the usual prod-
uct. Therefore, we investigate the above problems separately in the next sections.
Throughout this section, for convenience, we will use the following definition related
to the definition of the cross product.
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Definition 4.1. Let u, v ∈ R+
F (or R−

F ). If Core(u) consists exactly one element, i.e.
[u]1 = {uc}, we define

(u− uc)⊙ v = u⊙ v ⊖ ucv.

4.1. Investigation of solutions to Problem (I). In this section, we study Problem
(I) and give its explicit fuzzy solutions.

Theorem 4.2. Let a, b : [t0, T ) → RF be two fuzzy functions and the core [a(t)]1 =
{ac(t)} consists of exactly one element for any t ∈ [t0, T ) and y0 ∈ RF .

1. If a(t) ∈ R+
F and y0 +

∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds ∈ R+
F (or R−

F) for all t ∈ (t0, T ),
then y1 defined as

y1(t) = e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)

+ e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds,

is (i)-differentiable w.r.t. t and satisfies Problem (I).

2. If a(t) ∈ R−
F and y0 ⊖ (−1)

∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds ∈ R+
F (or R−

F) for all t ∈
(t0, T ), then y2 defined

y2(t) = e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)

⊖ (−1)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds,

is (ii)-differentiable w.r.t. t and satisfies Problem (I) provided that the H-
differences involving y2 and the following H-difference exist

e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr)⊖ (−1)

ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds.

Proof. Case 1. It follows from Lemma 3.2 and Case 1 of Lemma 3.3 that

y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds,

and ∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

are (i)-differentiable. Moreover, we have

(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)′ = b(t)e
−

∫ t
t0

ac(r)dr,
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and

(

∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= (a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr).

Since a(t) ∈ R+
F for all t ∈ (t0, T ), from Case 1 of Lemma 3.4 we deduce that the

following fuzzy functions are (i)-differentiable

(e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds))′

= ac(t)e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds) + b(t), (4.1)

and

(e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

+e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr). (4.2)

From Eqs. (4.1)-(4.2) and Case 1 of Lemma 3.3, we conclude that y1 is (i)-
differentiable and also from Definition 4.1, we have

y′1(t) = ac(t)y1(t) + (a(t)− ac(t))⊙ y1(t) + b(t) = a(t)⊙ y1(t) + b(t).

It means that y1 is a solution of Problem (I).
Case 2. We suppose that all of the H-differences involving in y2 exist. It follows

from Lemma 3.2 and Case 3 of Lemma 3.3 that y0 ⊖ (−1)
∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds is

(ii)-differentiable and from Lemma 3.2 that∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

is (i)-differentiable. Moreover, their derivatives are as follows

(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)′ = b(t) · e−
∫ t
t0

ac(r)dr,

and

(

∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= (a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr).
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Since a(t) ∈ R−
F for all t ∈ (t0, T ), from Case 6 of Lemma 3.4 we have (ii)-differentiability

for the fuzzy function below

(e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds))′

= ac(t)e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds) + b(t).

On the other hand, from Case 2 of Lemma 3.4 we have (i)-differentiability for the
following fuzzy function

(e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr)

⊖ (−1)ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds.

According to the assumptions of the present theorem, the above H-difference exists.
It follows from two above equations and Case 3 of Lemma 3.3 that y2 is (ii)-differentiable.
Moreover, from Definition 4.1 and two above equations, we have

y′2(t) = ac(t)y2(t) + (a(t)− ac(t))⊙ y2(t) + b(t) = a(t)⊙ y2(t) + b(t).

It means that y2 is a solution of Problem (I). □

4.2. Investigation of solutions to Problem (II). In this section, we study Prob-
lem (II) and give its explicit fuzzy solutions.

Theorem 4.3. Let a, b : [t0, T ) → RF be two fuzzy functions and the core of a(t)
consists exactly one element for any t ∈ [t0, T ), i.e. [a(t)]1 = {ac(t)} and y0 ∈ RF .

1. If a(t) ∈ R+
F and y0 ⊖ (−1)

∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds ∈ R+
F (or R−

F) for all t ∈
(t0, T ), then y1 defined as

y1(t) = e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)

+ e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

is (i)-differentiable w.r.t. t and satisfies Problem (II) provided that for t ∈
(t0, T ) the H-difference involving y1 and the following H-difference

ac(t)e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)⊖ (−1)b(t)

exist.
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2. If a(t) ∈ R−
F and y0 +

∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds ∈ R+
F (or R−

F) for all t ∈ (t0, T ),
then y2 defined as

y2(t) = e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)

⊖ (−1)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

is (ii)-differentiable w.r.t. t and satisfies Problem (II) provided that for t ∈
(t0, T ) the H-differences involving y2, the following H-differences

ac(t)e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)⊖ (−1)b(t),

and

e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr)⊖ (−1)

ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

exist.

Proof. Case 1. From Lemma 3.2 and Case 3 of Lemma 3.3,

y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds

is (ii)-differentiable and∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

is (i)-differentiable. Moreover, we have

(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)′ = b(t)e
−

∫ t
t0

ac(r)dr,

and

(
∫ t

t0
(a(s)− ac(s))⊙ (y0 +

∫ s

t0
b(r)e

−
∫ r
t0

ac(u)dudr)ds)′

= (a(t)− ac(t))⊙ (y0 +
∫ t

t0
b(r)e

−
∫ r
t0

ac(u)dudr).

Since a(t) ∈ R+
F for all t ∈ (t0, T ), from Case 5 of Lemma 3.4, we have (i)-differentiability

for the following fuzzy function

(e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)
∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds))′

= ac(t)e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)
∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds)⊖ (−1)b(t).
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According to the assumptions of the present theorem, the H-differences appeared
above exist. On the other hand, from Case 1 of Lemma 3.4, we have (i)-differentiability
for the following fuzzy function as below

(e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

+ e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr).

It follows from Case 1 of Lemma 3.3 that y1 is (i)-differentiable and from two above
equations and Definition 4.1 that

y′1(t) + (−1)b(t) = ac(t)y1(t) + (a(t)− ac(t))⊙ y1(t) = a(t)⊙ y1(t).

It means that y1 is a solution of Problem (II).
Case 2. We suppose that the H-difference involving in y2 exists. From Lemma 3.2

and Case 1 of Lemma 3.3, y0 +
∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds and
∫ t

t0
(a(s) − ac(s)) ⊙ (y0 +∫ s

t0
b(r)e

−
∫ r
t0

ac(u)dudr)ds are (i)-differentiable and we have

(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)′ = b(t)e
−

∫ t
t0

ac(r)dr,

and

(
∫ t

t0
(a(s)− ac(s))⊙ (y0 +

∫ s

t0
b(r)e

−
∫ r
t0

ac(u)dudr)ds)′

= (a(t)− ac(t))⊙ (y0 +
∫ t

t0
b(r)e

−
∫ r
t0

ac(u)dudr).

Since a(t) ∈ R−
F for all t ∈ (t0, T ), from Case 3 of Lemma 3.4, we have (ii)-

differentiability for the following function as below

(e
∫ t
t0

ac(s)ds(y0 +
∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds))′

= ac(t)e
∫ t
t0

ac(s)ds(y0 +
∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds)⊖ (−1)b(t).

According to the assumptions of the present theorem, the above H-difference exists.
On the other hand, we have (i)-differentiability for the following fuzzy function from
Case 2 of Lemme 3.4

(e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr)

⊖(−1)ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds.

According to the assumptions of the present theorem, the above H-difference exists.
It follows from case 3 of Lemma 3.3 that y2 is (ii)-differentiable and from two above
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equations and Definition 4.1 we have

y′2(t) + (−1)b(t) = ac(t)y2(t) + (a(t)− ac(t))⊙ y2(t) = a(t)⊙ y2(t).

It means that y2 is a solution of Problem (II). □

4.3. Investigation of solutions to Problem (III). In this section, we study Prob-
lem (III) and give its explicit fuzzy solutions.

Theorem 4.4. Let a, b : [t0, T ) → RF be two fuzzy functions and the core of a(t)
consists exactly one element for any t ∈ [t0, T ), i.e. [a(t)]1 = {ac(t)} and y0 ∈ RF .

1. If a(t) ∈ R+
F and y0 ⊖ (−1)

∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds ∈ R+
F (or R−

F) for all t ∈
(t0, T ), then y1 defined by

y1(t) = e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)

+ e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

is (ii)-differentiable w.r.t. t and satisfies Problem (III) provided that the H-
differences involving y1 and the H-differences

b(t)⊖ (−1)ac(t)e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds),

and

b(t)⊖ (−1)a(t)⊙ y1(t),

for all t ∈ (t0, T ) exist.

2. If a(t) ∈ R−
F and y0 +

∫ t

t0
b(s)e

−
∫ s
t0

ac(r)drds ∈ R+
F (or R−

F) for all t ∈ (t0, T ),
then y2 defined by

y2(t) = e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)

⊖ (−1)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

is (i)-differentiable w.r.t. t and satisfies Problem (III) provided that the H-
difference involving y2 and the H-differences

b(t)⊖ (−1)ac(t)e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds),

and

ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds⊖ (−1)

e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr),

for all t ∈ (t0, T ) exist.
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Proof. Case 1. From Lemma 3.2 and Case 4 of Lemma 3.3,

y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds

is (ii)-differentiable and
∫ t

t0
(a(s)−ac(s))⊙(y0+

∫ s

t0
b(r)e

−
∫ r
t0

ac(u)dudr)ds is (i)-differentiable.
Moreover, we have

(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)′ = b(t)e
−

∫ t
t0

ac(r)dr,

and (∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

)′

= (a(t)− ac(t))⊙
(
y0 ⊖ (−1)

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr

)
.

Since a(t) ∈ R+
F for all t ∈ (t0, T ), from Case 4 of Lemma 3.4 we have (ii)-differentiability

for the following fuzzy function

(e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds))′

= b(t)⊖ (−1)ac(t)e
∫ t
t0

ac(s)ds(y0 ⊖ (−1)

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds.

According to the assumptions of the present theorem, the above H-differences exist.
On the other hand, from Case 1 of Lemma 3.4 we have (i)-differentiability for the
following fuzzy function as bellow

(e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

+e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr).

It follows from Case 3 of Lemma 3.3 and the above equations that y1 is (ii)-differentiable
provided that the H-difference b(t)⊖ (−1)a(t)⊙ y1(t) for all t ∈ (t0, T ) exists and we
have

y′1(t) = b(t)⊖ (−1)(
ac(t)y1(t) + e

∫ t
t0

ac(s)ds(a(t)− ac(t))

(
y0 ⊖ (−1)

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr

))
= b(t)⊖ (−1)ac(t)y1(t) + (a(t)− ac(t))⊙ y1(t) = b(t)⊖ (−1)a(t)⊙ y1(t).

Then we have y′1(t)+(−1)a(t)⊙y1(t) = b(t). It means that y1 is a solution of Problem
(III).
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Case 2. We suppose that the H-difference involving in y2 exists. We know that

y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds,

and ∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

are (i)-differentiable. Also, we have

(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds)′ = b(t) · e−
∫ t
t0

ac(r)dr,

and

(

∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= (a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr).

Since a(t) ∈ R−
F for all t ∈ (t0, T ), from Case 2 of Lemma 3.4 we have (i)-differentiability

for the following fuzzy function

(e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds))′

= b(t)⊖ (−1)ac(t)e
∫ t
t0

ac(s)ds(y0 +

∫ t

t0

b(s)e
−

∫ s
t0

ac(r)drds),

and (ii)-differentiability for the following function from Case 3 of Lemma 3.4

(e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds)′

= ac(t)e
∫ t
t0

ac(s)ds
∫ t

t0

(a(s)− ac(s))⊙ (y0 +

∫ s

t0

b(r)e
−

∫ r
t0

ac(u)dudr)ds

⊖(−1)e
∫ t
t0

ac(s)ds(a(t)− ac(t))⊙ (y0 +

∫ t

t0

b(r)e
−

∫ r
t0

ac(u)dudr).

It follows from two above equations and Case 2 of Lemma 3.3 that y2 is (i)-differentiable
and we have from Definition 4.1

y′2(t) = b(t)⊖ (−1)(ac(t)y2(t) + (a(t)− ac(t))⊙ y2(t)).

Therefore, it means that y′2(t) + a(t)⊙ y2(t) = b(t) and y2 is the solution of Problem
(III). □
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5. Examples and Comparison with other approaches

This section is devoted to some examples and comparing the new approach pro-
posed in this paper to the existing ones in the literature.

Example 5.1. Consider the following initial value problem{
y′(t) =< t, 2t, 3t > ⊙y(t)+ < t

2 , t,
3t
2 >,

y(0) =< − 3
2 ,−1, −1

2 > .
(5.1)

Since for all t > 0, a(t) ∈ R+
F and

y0 +

∫ t

0

b(s)e−
∫ s
0
ac(r)drds =< − 3

2 ,−1,−1
2 > +

∫ t

0
< 1

2 , 1,
3
2 > se−s2ds (5.2)

=< −3
2 ,−1,− 1

2 > + < 1
2 , 1,

3
2 > (−1

2e
−t2 + 1

2 )

=< −1
4e

−t2 − 5
4 ,−

1
2e

−t2 − 1
2 ,−

3
4e

−t2 + 1
4 >∈ R−

F ,

we can apply Case 1 of Theorem 4.2 in order to obtain a solution for Problem (5.1)
which is (i)-differentiable for all t > 0. To this purpose we derive∫ t

0
(a(s)− ac(s))⊙ (y0 +

∫ s

0
b(r)e−

∫ r
0
ac(u)du)ds = (5.3)∫ t

0
< s, 2s, 3s > ⊙ < −1

4e
−s2 − 5

4 ,−
1
2e

−s2 − 1
2 ,−

3
4e

−s2 + 1
4 >

⊖(2s) < −1
4e

−s2 − 5
4 ,−

1
2e

−s2 − 1
2 ,−

3
4e

−s2 + 1
4 > ds

=
∫ t

0
< −s( 12 + 1

2e
−s2), 0, s( 12 + 1

2e
−s2) > ds

=< −1
4 t

2 + 1
4e

−t2 − 1
4 , 0,

1
4 t

2 − 1
4e

−t2 + 1
4 > .

Utilizing Eqs. (5.2)-(5.3) and Case 1 of Theorem 4.2, we obtain the solution of
Problem 5.1 as follows

u(t) =< ul(t), uc(t), ur(t) >=< −1

4
t2et

2

− 3

2
et

2

,−1

2
et

2

− 1

2
,
1

4
t2et

2

+
1

2
et

2

− 1 > .

Moreover, we have

Diam(u(t)) =
1

2
t2et

2

+ 2et
2

− 1.

As we can see in Figure 2(b), the diam of the solution of Problem(5.1) is increasing
w.r.t. t. Also, three functions ul, uc, ur can be seen in Figure 2(a).

Example 5.2. Consider the following initial value problem{
y′(t) =< −3t,−2t,−t > ⊙y(t)+ < t

2 , t,
3t
2 >,

y(0) =< − 3
2 ,−1, −1

2 > .
(5.4)

Since a(t) ∈ R−
F for t > 0, we apply Case 2 of Theorem 4.2 and check if all of the

H-differences appeared in this case exist. The following H-difference for t ∈ [0,
√
ln 3]

exists, that is

et
2

,− 3
4
+ 1

4
et

2

>∈ R−
F .
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Figure 1. Plot of the solution of Problem (5.1).

(a) The solution of Problem (5.1) Based
on the cross product

(b) Plot of the diam of the solutions of Problem
(5.1)

On the other hand, we can derive

(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

0

b(s)e−
∫ s
0 ac(r)dr)ds =

< −3t,−2t,−t > ⊙ < −9

4
+

3

4
et

2

,−3

2
+

1

2
et

2

,−3

4
+

1

4
et

2

>

⊖ (−2t) < −9

4
+

3

4
et

2

,−3

2
+

1

2
et

2

,−3

4
+

1

4
et

2

>=< −3

2
t+

1

2
tet

2

, 0,
3

2
t− 1

2
tet

2

> .

Utilizing the above equation, it follows that the following H-difference for t ∈ [0,
√

2
3 ]

exists, that is

e
∫ t
0
ac(s)ds(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

0

b(r)e−
∫ r
0
ac(u)dudr)⊖ (−1)

ac(t)e
∫ t
0
ac(s)ds

∫ t

0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

0

b(r)e−
∫ r
0
ac(u)dudr)ds

= e−t2 < −t+
3

2
t3, 0, t− 3

2
t3 > .

Therefore, one can obtain the following solution for Problem (5.4) which is (ii)-

differentiable for 0 ≤ t ≤
√

2
3

u(t) =
1

4
e−t2 < 2et

2

+ 3t2 − 8, 2et
2

− 6, 2et
2

− 3t2 − 4 > .

Moreover, we have

Diam(u(t)) =
1

4
e−t2(−6t2 + 4).
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Now, we are going to compare this example with Example 5.3 in [10]. The proposed
method in the mentioned paper is based on the usual product obtained by Zadeh’s
extension principle. The current example is the same as Example 5.3 in [10] for which

we have the following α-cuts of the solution for t ∈ (0,
√
2
2 ) as follows

[v(t)]α =
1

2

[
1 + (−4 + α)e

α−3
2 t2 , 1 + (−2− α)e

1
2 (−1−α)t2

]
.

Moreover, the diam of this solution is as follows

Diam(v(t)) = 2e
−3t2

2 − e
−t2

2 .

We observe in this example that the solution obtained by our approach is different
from the solution based on the usual product in [10]. The comparison between these
two solutions obtained by the different methods demonstrates that the uncertainty of
the solution obtained by the method of the cross product is less than the uncertainty
of the solution obtained by the method based on the usual product. This fact can be
illustrated in Figures 3(a) and 3(b).

Figure 2. Plot of the solutions of Problem (5.4).

(a) The solutions u and v of Problem (5.4) (b) Plot of the diam of the solutions u and
v of Problem (5.4)

Example 5.3. Consider the following initial value problem{
y′(t) =< − 3

2 ,−1,− 1
2 > ⊙y(t),

y(0) =< 1
2 , 1,

3
2 > .

(5.5)

Since a(t) ∈ R−
F for t > 0, we apply Case 2 of Theorem 4.2 and check if all of the

H-differences appeared in this case exist. The following H-difference for t > 0 exists,
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that is

y0 ⊖ (−1)

∫ t

0

b(s)e−
∫ s
0
ac(r)dr =<

1

2
, 1,

3

2
> .

On the other hand, we can derive

(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

0

b(s)e−
∫ s
0
ac(r)dr) =< −1

2
, 0,

1

2
> .

Utilizing the above equation, it follows that the following H-difference for t ∈ [0, 1]
exists, that is

e
∫ t
0
ac(s)ds(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

0

b(r)e−
∫ r
0
ac(u)dudr)⊖ (−1)

ac(t)e
∫ t
0
ac(s)ds

∫ t

0

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

0

b(r)e−
∫ r
0
ac(u)dudr)ds

=< −1

2
, 0,

1

2
> ⊖ < −1

2
t, 0,

1

2
t >=< −1

2
+

1

2
t, 0,

1

2
− 1

2
t > .

Therefore, one can obtain the following solution for Problem (5.5) which is (ii)-
differentiable for 0 < t < 1

u(t) =
1

2
e−t < 1 + t, 2, 3− t > .

Moreover, we have

Diam(u(t)) = e−t(1− t).

The current example is the same as Example 5.1 in [10] for which we have the following
α-cuts of the solution for t ∈ (0, 2

3 ) as follows

[v(t)]α =
1

2

[
(1 + α)e

1
2 (−1−α)t, (3− α)e

1
2 (−3+α)t

]
.

Moreover, the diam of this solution is given by

Diam(v(t)) =
3

2
e

−3t
2 − 1

2
e

−t
2 .

Another interpretation of solution is Based on Zadeh’s Extension Principle [6]. Under
this interpretation, Problem (5.5) is solved as a crisp problem. Then a solution of
Problem (5.5) is generated using Zadeh’s extension principle on the classical solution.
Therefore, we have the following solution to Problem (5.5)

[w(t)]α =
1

2

[
(1 + α)e

1
2 (−3+α)t, (3− α)e

1
2 (−1−α)t

]
.

Moreover, the diam of this solution is as follows

Diam(w(t)) =
3

2
e

−t
2 − 1

2
e

−3t
2 .

Here, we can observe that the solution obtained by our approach is different from
the solutions based on the usual product in [10] and Zadeh’s extension principle.
The comparison between these three solutions obtained by the different methods
demonstrates that the uncertainty of the solution obtained by the method of the cross
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Figure 3. Plot of the solutions of Problem (5.5).

(a) The solution u of Problem (5.5) (b) The solution v of Problem (5.5)

(c) The solution w of Problem (5.5) (d) Plot of the diam of the solutions u,

v and w of Problem (5.5)

product is less than the uncertainty of the solution obtained by the methods based
on the usual product and Zadeh’s extension principle. This fact has been illustrated
in Figures 4(a), 4(b), 4(c) and 4(d).

Example 5.4. Consider the following initial value problem for t > 0{
y′(t) = cos t < 1, 2, 3 > ⊙y(t) + cos t < 1

2 , 1,
3
2 >,

y(0) =< 1, 2, 3 > .
(5.6)

Since a(t) has the different signs for t > 0, we can partition the interval [0,+∞) to
some subintervals such that a(t) is positive or negative on them. For the convenience,
we just consider two of the subintervals [0, π

2 ] and [π2 , π] such that a(t) is positive on
the first one and negative on the second one. For t ∈ [0, π

2 ], the following function is
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positive

y0 +

∫ t

0

b(s)e−
∫ s
0 ac(r)drds =< 1, 2, 3 > +

∫ t

0

<
1

2
, 1,

3

2
> cos se−2 sin sds

=< 1, 2, 3 > + <
1

2
, 1,

3

2
> (−1

2
e−2 sin t +

1

2
)

=< −1

4
e−2 sin t +

5

4
,−1

2
e−2 sin t +

5

2
,−3

4
e−2 sin t +

15

4
> . (5.7)

On the other hand, utilizing Definition 4.1, we have∫ t

0

(a(s)− ac(s))⊙ (y0 +

∫ s

0

b(r)e−
∫ r
0 ac(u)du)ds =∫ t

0

< cos s, 2 cos s, 3 cos s > ⊙ <
−1

4
e−2 sin s +

5

4
,
−1

2
e−2 sin s +

5

2
,
−3

4
e−2 sin s +

15

4
>

⊖ (2 cos s) < −1

4
e−2 sin s +

5

4
,−1

2
e−2 sin s +

5

2
,−3

4
e−2 sin s +

15

4
> ds

=

∫ t

0

< − cos s(
5

2
− 1

2
e−2 sin s), 0, cos s(

5

2
− 1

2
e−2 sin s) > ds

=< −5

2
sin t− 1

4
e−2 sin t +

1

4
, 0,

5

2
sin t+

1

4
e−2 sin t − 1

4
> . (5.8)

We apply Case 1 of Theorem 4.2 together with Eqs. (5.7) and (5.8) in order to obtain
the following solution for Problem (5.6) which is (i)-differentiable for 0 < t < π

2

y(t) = e2 sin t < −5

2
sin t− 1

2
e−2 sin t +

3

2
,−1

2
e−2 sin t +

5

2
,
5

2
sin t− 1

2
e−2 sin t +

7

2
> .

In this step, one can consider a new fuzzy initial value problem to gain solution for
Problem (5.6) on the interval [π2 , π] (if it exists). To this end we consider the new
initial value problem as follows{

y′(t) = cos t < 1, 2, 3 > ⊙y(t) + cos t < 1
2 , 1,

3
2 >,

y0 = y(π2 ) = e2 < −1− 1
2e

−2, 5
2 − 1

2e
−2, 6− 1

2e
−2 > .

(5.9)

Since a(t) ∈ R−
F for t ∈ [π2 , π], we apply Case 2 of Theorem 4.2 and check if all of

H-differences appeared in this case exist. The following H-difference exists, that is

y0 ⊖ (−1)

∫ t

π
2

b(s)e
−

∫ s
π
2

ac(r)dr

= e2 < −1− 1

2
e−2,

5

2
− 1

2
e−2, 6− 1

2
e−2 > ⊖(−1)e2

∫ t

π
2

<
1

2
, 1,

3

2
> cos se−2 sin sds

= e2 < −1− 1

4
e−2 − 1

4
e−2 sin t,

5

2
− 1

2
e−2 sin t, 6 +

1

4
e−2 − 3

4
e−2 sin t >∈ R+

F .

On the other hand, we can derive

e−2 sin t, 6 + 1
4
e−2 − 3

4
e−2 sin t >

⊖ 2e2 cos t < −1− 1
4
e−2 − 1

4
e−2 sin t, 5

2
− 1

2
e−2 sin t, 6 + 1

4
e−2 − 3

4
e−2 sin t >

= e2 < cos t( 5
2
− 1

2
e−2 sin t), 0,− cos t( 5

2
− 1

2
e−2 sin t) > .
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But the following H-difference dose not exists, that is

e
∫ t

π
2
ac(s)ds

(a(t)− ac(t))⊙ (y0 ⊖ (−1)

∫ t

π
2

b(r)e
−

∫ r
π
2
ac(u)du

dr)⊖ (−1)

ac(t)e
∫ t
t0

ac(s)ds
∫ t

π
2

(a(s)− ac(s))⊙ (y0 ⊖ (−1)

∫ s

π
2

b(r)e
−

∫ r
π
2
ac(u)du

dr)ds

=< −5

2
cos t− 1

2
e−2 cos t+

5

2
sin 2t, 0,

5

2
cos t+

1

2
e−2 cos t− 5

2
sin 2t >/∈ RF .

It follows that we are not able to find any solution on the interval [π2 , π].

Example 5.5. Consider the following initial value problem{
y′(t) =< t2, t2 + 1, t2 + 2 > ⊙y(t)+ < t

2 , t,
3t
2 >,

y(0) =< 0, 1, 2 > .
(5.10)

It is obvious that for all t > 0, a(t) ∈ R+
F and also

y0 +

∫ t

0

b(s)e−
∫ s
0
ac(r)drds =< 0, 1, 2 >

+ <

∫ t

0

s

2
e−

s3

3 −sds,

∫ t

0

se−
s3

3 −sds,

∫ t

0

3s

2
e−

s3

3 −sds >

=<
1

2
g(t), 1 + g(t), 2 +

3

2
g(t) >∈ R+

F ,

where g(t) =
∫ t

0
se−

s3

3 −sds.
On the other hand, utilizing Definition 4.1, we have∫ t

0

(a(s)− ac(s))⊙ (y0 +

∫ s

0

b(r)e−
∫ r
0
ac(u)du)ds =∫ t

0

(
< s2, s2 + 1, s2 + 2 > ⊙ <

1

2
g(s), 1 + g(s), 2 +

3

2
g(s) >

⊖(s2 + 1) <
1

2
g(s), 1 + g(s), 2 +

3

2
g(s) >

)
ds

=

∫ t

0

< −(1 + g(s)), 0, 1 + g(s) > ds

=< −
∫ t

0

(1 + g(s))ds, 0,

∫ t

0

(1 + g(s))ds > .

We apply Case 1 of Theorem 4.2 in order to obtain the following solution for Problem
(5.10) which is (i)-differentiable for t > 0

y(t) = e
t3

3 +t <
1

2
g(t)− t−

∫ t

0

g(s)ds, 1 + g(t), 2 +
3

2
g(t) + t+

∫ t

0

g(s)ds > .
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