تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,065 |
تعداد دریافت فایل اصل مقاله | 15,624,721 |
Development of non polynomial spline and New B-spline with application to solution of Klein-Gordon equation | ||
Computational Methods for Differential Equations | ||
مقاله 13، دوره 8، شماره 4، بهمن 2020، صفحه 794-814 اصل مقاله (695.44 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.27847.1377 | ||
نویسندگان | ||
Homa Zadvan1؛ Jalil Rashidinia* 2 | ||
1Department of Mathematics and Statistics, Central Tehran Branch, Islamic Azad University, Tehran, Iran. | ||
2School of Mathematics, Iran University of Science and Technol- ogy, Hengam, Narmak, 168613114 Tehran, Iran. | ||
چکیده | ||
In this paper we develop a non polynomial cubic spline functions which we called ”TS spline”, based on trigonometric functions. The convergence analysis of this spline is investigated in details. The definition of B-spline basis function for TS spline is extended and ”TS B-spline” is introduced. This paper attempts to develop collocation method based on this B-spline for the numerical solution of the nonlinear Klein-Gordon equation. The convergence analysis of this approach is discussed, the second order of convergence is proved consequently. The proposed method is applied on some test examples and the numerical results are compared with those already available in literature. Observed errors in the solutions show the efficiency and numerical applicability of the proposed method. | ||
کلیدواژهها | ||
Non-polynomial spline function؛ B-spline function؛ Nonlinear Klein-Gordon equation؛ Convergence Analysis | ||
آمار تعداد مشاهده مقاله: 552 تعداد دریافت فایل اصل مقاله: 469 |