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Abstract In this work, we propose an efficient numerical algorithm based upon compact finite

difference to solve Lane-Emden equations which are nonlinear ordinary differential
equations. The presented method reduces the solution of Lane-Emden equations to

the solution of a nonlinear system of equations. The numerical experiments show

the accuracy and efficiency of this method.
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1. Introduction

Consider the following Lane-Emden equation:

y′′(x) +
k

x
y′(x) + f(x, y(x)) = h(x), k, x > 0, (1.1)

with initial conditions:

y(0) = α, y′(0) = β, (1.2)

where f(x, y) and h(x) are some given continuous real valued functions. It is well
known that an analytic solution of Lane-Emden type equation in the neighborhood
of the singular point x = 0 is always possible[5].

The Eq. (1.1) can be used for several problems in mathematical physics and as-
trophysics. For instance, the theories of stellar structure, thermionic currents and
also the thermal behaviour of a spherical cloud of gas, isothermal gas sphere can be
formulated as Eq. (1.1) [4, 5]. In special form, for f(x, y) = ym and h(x) = 0, which
known as standard Lane-Emden (or Lane-Emden of the first kind), this equation
occurs in astrophysics to model the gravitational potential of polytropic fluids in a
self-gravitating star[15]. Also, this form can be used to model the temperature of a
spherical cloud of gas under the mutual attraction of its molecules and subject to the
classical laws of thermodynamics [5]. The Lane-Emden equation of the second kind,
in which f(x, y) = ey and h(x) = 0, is used to formulate a thermal explosion in a
cylindrical vessel or a rectangular slab[7, 27].
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Recently, many analytical and numerical methods have been proposed to solve
Lane-Emden Eq. (1.1). Parand et al. [18, 19, 20, 21, 22, 23] solved Lane-Emden
equation through different methods. In [20] a method is proposed based on Bessel
orthogonal functions collocation method for the first and the second kind of Lane-
Emden equation. Also, based on a modified generalized Laguerre functions La-
grangian method, Parand et al. [22] proposed a Lagrangian method for the first
kind of Lane-Emden equation. Parand and Hashemi [19] applied a meshless method
based on radial basis function differential quadrature(RBF-DQ) method to solve some
well-known classes of Lane-Emden type equations. Also, in [18] a Hermit functions
collocation (HFC) method is employed. In [23], a pseudospectral method based on
rational Legendre functions is applied to solve Lane-Emden equations and in [21],
Parand and Pirkhedri proposed Sinc-collocation method for solving standard Lane-
Emden equation with initial conditions y(0) = 1, y′(0) = 0. In [25], Shiralashetti and
Kumbinarasaiah proposed a method using Legendre, Hermite and Laguerre wavelets.

In [3], authors used iterative methods based on the Newton-Raphson-Kantorovich
approximation and in [16], Pandey and Kumar introduced a numerical method using
Bernstein operational matrix of differentiation, for special initial conditions y(0) = a
and y′(0) = 0. In [12], a Haar wavelet quasi-linearization approach for the first and the
second kind of Lane-Emden equation is studied. Marzban et al. [13] applied hybrid
functions to find out the numerical solution of Eq. (1.1) with initial condition y(0) =
a, y′(0) = 0, for some particular nonlinear cases. With these initial conditions, Eq.
(1.1) is solved in [17], using Legendre operational matrix of differentiation. Legendre
spectral method has been used for Lane-Emden equation in [1, 14] for f(x, y) =
g(y), h(x) = 0 and f(x, y) = p(x)g(y), y(0) = α, y′(0) = 0 respectively.

Kazemi nasab et al. [11] suggested a numerical method based upon hybrid of
Chebyshev wavelets and finite difference(CWFD) methods for the case where f(x, y) =
p(x)q(y) and expanded this technique for fractional Lane-Emden type equation in [10].
Saadatmandi et al. [24] proposed two computational schemes based on collocation
method with operational matrices of orthonormal Bernstein polynomials for fractional
Lane-Emden type equations.

By using variation iterative method, in [6] a numerical method has been proposed.
Wazwaz [28, 29] has proposed a general way to find out exact and series solutions,
by employing the Adomian decomposition method. Yousefi [26] obtained a numerical
solution of Lane-Emden equations based on the Legendre wavelets method. In [9]
Karimi Vanani and Aminataei constructed an approximate polynomial solution by
using of integral operator for 0 ≤ x ≤ 1.

In this work, a simple and accurate numerical technique for solving Eq. (1.1) will
be constructed. In this technique, we use two compact finite difference schemes for
the first and the second derivatives, and solution of Eq. (1.1) reduced to solution of
a nonlinear system of equations.

The structure of the paper is as follows: In section 2, we review a simple compact
finite difference and apply this for Lane-Emden Eq. (1.1). In section 3, the proposed
approach is applied for some examples and a comparison is made with existing results
in the literature. A very high level of accuracy shows the ability of our method for
this problem. Finally, a conclusion is drawn in Section 4.
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2. The proposed method

To produce a compact finite difference scheme, first of all, the domain [0, a] is
divided into N equal subinterval of width h = a

N . The grid points are shown by
xi = ih, i = 0, · · · , N and yi ≈ y(xi). By a compact finite difference formula
presented in [31, 32], we have

4y′1 + y′2 = 1
h [− 11

12y0 − 4y1 + 6y2 − 4
3y3 + 1

4y4],

y′i−1 + 4y′i + y′i+1 = 3
h (yi+1 − yi−1), i = 1 · · · , N − 1,

y′N−2 + 4y′N−1 = 1
h [− 1

4yN−4 + 4
3yN−3 − 6yN−2 + 4yN−1 + 11

12yN ].

(2.1)

The matrix form for Eq. (2.1) is A1Y
′ = B1Y , where

A1 =



0 4 1 0 · · · 0
1 4 1 · · · · · · 0
0 1 4 1 · · · 0
...

. . .
. . .

. . .
. . .

...
... 0 · · · 1 4 1
0 · · · · · · 1 4 0


(N+1)×(N+1)

,

B1 =
1

h



− 11
12 −4 6 − 4

3
1
4 0 · · · 0

−3 0 3 0 0
... 0

0 −3 0 3 0 · · · · · · 0
...

. . .
...

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 3 0 −3
0 · · · 0 − 1

4
4
3 −6 4 11

12


(N+1)×(N+1)

.

and

Y = [y0, y1, · · · , yN ]T , Y ′ = [y′0, · · · , y′N ]T .

Lemma 2.1. The coefficient matrix A1 is invertible.

Proof. Let’s expand A1 along the first column, therefore

det(A1) = −det


4 1 0 · · · 0
1 4 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 4 1
· · · · · · 1 4 0


N×N

.
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Now, by expanding along the last column, we have

det(A1) = ±det


4 1 0 · · · 0
1 4 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 4 1
0 · · · 0 1 4


(N−1)×(N−1)

6= 0 .

�

Similarly, for the second order derivative, we have
14y′′1 − 5y′′2 + 4y′′3 − y′′4 = 12

h2 (y0 − 2y1 + y2),

y′′i−1 + 10y′′i + y′′i+1 = 12
h2 (yi−1 − 2yi + yi+1), i = 1, · · · , N − 1,

−y′′N−4 + 4y′′N−3 − 5y′′N−2 + 14y′N−1 = 12
h2 (yN−2 − 2yN−1 + yN ).

(2.2)

The truncation error for Eq. (2.1) and Eq. (2.2) is O(h4). In matrix form, Eq. (2.2)
is written as:

A2Y
′′ = B2Y ,

where

A2 =



0 14 −5 4 −1 0 · · · 0
1 10 1 0 0 · · · · · · 0
0 1 10 1 0 · · · · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 0 1 10 1
0 · · · 0 −1 4 −5 14 0


(N+1)×(N+1)

B2 =
12

h2



1 −2 1 0 · · · 0
1 −2 1 0 · · · 0

0 1 −2 1 0
...

...
. . .

. . .
. . .

. . .
...

0 · · · · · · 1 −2 1
0 · · · 0 1 −2 1


(N+1)×(N+1)

and

Y ′′ = [y′′0 , · · · , y′′N ]T .

It is easy to show that the coefficient matrix A2 is invertible.
According to above,

Y ′ = A−1
1 B1Y, Y

′′ = A−1
2 B2Y, (2.3)

or

y′i =

N∑
j=0

cijyj , y
′′
i =

N∑
j=0

dijyj , i = 0, 1, · · · , N, (2.4)
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Table 1. The maximum absolute errors for m = 0, 1, 5 and x ∈
[0, 1]for Example 3.1 .

h = 0.2 h = 0.1
m = 0 9.0e(−20) 2.0e(−19)
m = 1 8.93e(−7) 2.18e(−8)
m = 5 4.10e(−5) 7.29e(−7)

where C = (c)ij = A−1
1 B1 and D = (d)ij = A−1

2 B2.
Due to the initial condition y′0 = β, we can have

N∑
j=0

c0juj = β, (2.5)

as the first equation. Other equations can be written as

N∑
j=0

dijyj +
α

xi

N∑
j=0

cijyj + fi = hi, i = 1, · · · , N − 1, (2.6)

where fi = f(xi, yi) and hi = h(xi). Eqs. (2.5) and (2.6) form a nonlinear system,
therefore by solving this system, we obtain the yj , j = 0, 1, · · · , N .

3. Numerical experiment

In this section, we apply the proposed method, to solve the Lane-Emden Eq. (1.1)
with initial condition Eq. (1.2). Eq. (2.5) and Eq. (2.6) are solved by ”fsolve”
command in Maple17 with 20 digits.

3.1. The standard Lane-Emden equation.

Example 3.1. Consider the following Lane-Emden equation,

y′′(x) +
2

x
y′(x) + ym(x) = 0, x > 0, (3.1)

with conditions y(0) = 1 and y′(0) = 0. The physically interesting range for m is
0 ≤ m ≤ 5. For m = 0, 1, 5, the exact solutions for Eq. (3.1) are respectively

y(x) = 1− 1

3!
x2, y(x) =

sin(x)

x
, y(x) =

(
1 +

x2

3

)− 1
2 .

Table 1 shows the maximum absolute errors for the interval [0, 1].
For other values of m there is no exact analytical solution, therefore we construct the
residual value as

Res(i) = |y′′i +
k

xi
y′i + fi − hi| ,

which y′′i and y′i can been computed from Eq. (2.3). Tables 2-6 show some yis for
m = 1.5, 2, 2.5, 3, and 4, respectively and compare with some well-known methods in
other articles.
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Table 2. Comparison of y(x) values of standard Lane-Emden equation
for m = 1.5, a = 3.7, h = 0.1(Example 3.1).

xi Horedt[8] RBF-DQ[19] Presented method Res
0.1 9.983346e(−1) 9.983345826e(−1) 9.9833453708e(−1) 6.21e(−18)
0.5 9.591039e(−1) 9.591038569e(−1) 9.5910384304e(−1) 2.82e(−18)
1 8.451698e(−1) 8.451697549e(−1) 8.4516967833e(−1) 2.20e(−19)
3 1.588576e(−1) 1.588576082e(−1) 1.5885754780e(−1) 7.34e(−19)

3.6 1.109099e(−2) 1.109099415e(−2) 1.1090950970e(−2) 1.80e(−20)

Table 3. Comparison of y(x) values of standard Lane-Emden equation
for m = 2, a = 4.4, h = 0.1(Example 3.1) .

xi RBF-DQ[19] Presented method Res
0.1 9.98334998e(−1) 9.98334903e(−1) 9.34e(−18)
0.5 9.59352716e(−1) 9.59352687e(−1) 8.58e(−18)
3 2.41824083e(−1) 2.41824085e(−1) 7.47e(−19)

4.3 6.81094327e(−3) 6.81106949e(−3) 1.76e(−19)

Table 4. Comparison of y(x) values of standard Lane-Emden equation
for m = 2.5, a = 5.4. h = 0.1(Example 3.1) .

xi RBF-DQ[19] Presented method Res
0.1 9.98335414e(−1) 9.98335253e(−1) 1.83e(−18)
0.5 9.59597754e(−1) 9.59597706e(−1) 1.46e(−17)
1 8.51944199e(−1) 8.51944009e(−1) 4.98e(−18)
4 1.37680733e(−1) 1.37680875e(−1) 8.01e(−19)
5 2.90191866e(−2) 2.90193596e(−2) 1.30e(−19)

5.3 4.25954353e(−3) 4.25972208e(−3) 1.35e(−20)

Table 5. Comparison of y(x) values of standard Lane-Emden equation
for m = 3, a = 6.9, h = 0.1(Example 3.1).

xi RBF-DQ[19] CWFD[11] Presented method Res
0.1 9.983358e(−1) 9.983358e(−1) 9.983356e(−1) 4.30e(−18)
0.5 9.598391e(−1) 9.598391e(−1) 9.598390e(−1) 6.40e(−19)
1 8.550575e(−1) 8.550576e(−1) 8.550573e(−1) 1.36e(−17)
5 1.108199e(−2) 1.108198e(−1) 1.108200e(−1) 1.30e(−19)
6 4.373798e(−2) 4.373798e(−2) 4.373818e(−2) 4.08e(−19)

6.8 4.167789e(−3) 4.167789e(−3) 4.167985e(−3) 9.36e(−20)

3.2. The second kind of Lane-Emden equation.

Example 3.2. Consider the following second kind of Lane-Emden equation

y′′(x) +
2

x
y′(x) + ey(x) = 0, x > 0; (3.2)
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Table 6. Comparison of y(x) values of standard Lane-Emden equation
for m = 4, a = 15, h = 0.1, for Example 3.1 .

xi Horedt[8] RBF-DQ[19] CWFD[11] Presented method Res
0.1 9.983367e(−1) 9.983366e(−1) 9.983367e(−1) 9.983362e(−1) 2.48e(−18)
0.2 9.933862e(−1) 9.933862e(−1) 9.933862e(−1) 9.933861e(−1) 7.49e(−18)
0.5 9.603109e(−1) 9.603109e(−1) 9.603109e(−1) 9.603108e(−1) 1.88e(−18)
1 8.608138e(−1) 8.608144e(−1) 8.608138e(−1) 8.608135e(−1) 1.59e(−17)
5 2.359227e(−1) 2.352433e(−1) 2.359227e(−1) 2.359229e(−1) 1.08e(−18)
10 5.967274e(−2) 5.965197(−2) 5.967274e(−2) 5.967291e(−2) 1.27e(−19)
14 8.330527e(−3) 8.330447e(−3) 8.330527e(−3) 8.330677e(−3) 1.02e(−19)

14.9 5.764189e(−4) 5.763524e(−4) 5.76419e(−4) 5.765661e(−4) 1.81e(−20)

Table 7. Comparison of y(x) values obtained by presented method
(for a = 2.6, h = 0.1) and some other results, for Example 3.2.

xi RBF-DQ[19] ADM[29] Presented method Res
0.1 −1.66583e(−3) −1.665834e(−3) −1.666587e(−3) 6.0e(−20)
0.2 −6.65336e(−3) −6.653367e(−3) −6.653373e(−3) 3.0e(−20)
0.5 −4.115395e(−2) −4.115396e(−2) −4.115397e(−2) 5.3e(−19)
1 −1.588277e(−1) −1.588273e(−1) −1.588277e(−1) 1.7e(−19)

1.5 −3.380194e(−1) −3.380131e(−1) −3.380195e(−1) 1.31e(−18)
2 −5.598230e(−1) −5.599627e(−1) −5.598231e(−1) 1.08e(−18)

2.5 −8.063409e(−1) −8.100197e(−1) −8.063410e(−1) 2.68e(−18)

with conditions y(0) = y′(0) = 0. This equation has been solved in some litera-
ture. For instance Wazwaz in [29], by using ADM and series expansion obtained the
following approximate solution

y(x) ' −1

6
x2 +

1

5× 4!
x4 − 8

21× 6!
x6 +

122

81× 8!
x8 − 61× 67

495× 10!
x10.

Also, Bessel orthogonal functions collocation method[20], Lagrangian method [22],
RBF-DQ method [19], HFC method [18], iterative method [3] and some other tech-
niques are applied for Eq. (3.2). A comparison of yi’s obtained by the presented
method in this work and some results are shown in Table 7.

3.3. Other examples.

Example 3.3. Consider the following nonlinear Lane-Emden equation given by[19,
18, 29]:

y′′(x) +
2

x
y′(x) + sin(y(x)) = 0, x > 0 (3.3)
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Table 8. Comparison of yi, between presented method (for a =
2.1, h = 0.1) and solutions given by [18, 19, 29], for Example 3.3.

xi HFC[18] RBF-DQ[19] ADM[29] Presented method Res
0.1 0.99860514 0.9985979 0.9985979 0.9985979371 9.97e(−18)
0.2 0.99440627 0.99439626 0.9943962 0.9943962666 9.36e(−18)
0.5 0.96518817 0.96517778 0.9651777 0.9651777832 5.00e(−18)
1 0.86368813 0.86368112 0.8636811 0.863681139 8.17e(−18)

1.5 0.70505241 0.70504523 0.7050419 0.7050452474 4.69e(−18)
2 0.50646876 0.50646363 0.5063720 0.5064636131 7.50e(−19)

with initial conditions y(0) = 1, y′(0) = 0. By using ADM in [29], Wazwaz computed
the following approximate solution

y(x) ' 1− 1

6
kx2 +

1

120
klx4 + k

(
1

3024
k2 − 1

5040
l2
)
x6

+kl

(
113

3265920
k2 +

1

362880
l2
)
x8

+k

(
1781

898128000
k2l2 − 1

399168000
l4 − 19

2395080
k4

)
x10,

where k = sin(1) and l = cos(1). By solving Eq. (3.3), we obtain the shown results in
Table 8. This table compares the yi’s obtained by the presented method in this work
and some well known methods.

Example 3.4. Let f(x, y) = 4(2ey(x) + e
y(x)
2 ), h(x) = 0 and y(0) = y′(0) = 0.

Therefore the corresponding Lane-Emden equation has the following form

y′′(x) +
2

x
y′(x) + 4(2ey(x) + e

y(x)
2 ) = 0, y(0) = y′(0) = 0. (3.4)

The exact solution for this problem is

y(x) = −2 ln(1 + x2).

This problem has been solved by RBF-DQ method [19], HFC method [18], HPM
method [30]. In this work, we applied the presented finite difference scheme for Eq.
(3.4) and obtained the results shown in Table 9.

Example 3.5. Consider the following Lane-Emden equation

y′′(x) +
6

x
y′(x) + 14y(x) = −4y(x) ln(y), x > 0; (3.5)

with the initial conditions y(0) = 1, y′(0) = 0. The exact solution for Eq(3.5) is

y(x) = e−x
2

.

From Table 10, it is observed that presented finite difference method is better than
method proposed in [2].
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Table 9. Numerical solution of the Lane-Emden equation and cor-
responding absolute error for a = 10.1, h = 0.1, for Example 3.4
.

xi RBF-DQ[19] Presented method Absolute error
0.1 −0.019900660 −0.019939474 3.88e(−5)
0.5 −0.44628712 −0.446297661 1.06e(−5)
1 −1.38629440 −1.38629665 2.29e(−6)
2 −3.2188869 −3.21886926 6.57e(−6)
3 −4.60506457 −4.60516394 6.25e(−6)
4 −5.6664689 −5.66642202 4.66e(−6)
5 −6.51642073 −6.51618993 3.15e(−6)
6 −7.22186619 −7.22183393 1.89e(−6)
7 −7.82405388 −7.82404511 8.99e(−7)
8 −8.34877271 −8.34877442 1.17e(−7)
9 −8.81343853 −8.81343899 4.95e(−7)
10 −9.23024103 −9.23024201 9.74e(−7)

Table 10. Comparison of absolute errors for presented method(a =
1, h = 0.1) and method in [2], for Example 3.5.

xi Absolute error obtained by Absolute error obtained Exact solution
presented method in [2]

0.1 7.53e(−6) 4.89e(−5) 0.99004983
0.2 7.83e(−7) 6.84e(−6) 0.96078944
0.3 3.93e(−6) 8.03e(−7) 0.91393118
0.4 4.37e(−6) 8.38e(−6) 0.85214379
0.5 5.99e(−6) 1.28e(−5) 0.77880078
0.6 6.85e(−6) 5.32e(−5) 0.69767632
0.7 7.35e(−6) 2.07e(−4) 0.61262639
0.8 7.08e(−6) 2.94e(−4) 0.52729242
0.9 6.77e(−6) 1.42e(−3) 0.44485806
1 7.25e(−6) 3.07e(−3) 0.36787944

Example 3.6. Consider the following Lane-Emden equation [9]:

y′′(x) +
2

x
y′(x) + y(x) = 6 + 12x+ x2 + x3, x ≥ 0; (3.6)

with initial condition y(0) = y′(0) = 0. The exact solution for this equation is
y(x) = x2 +x3. Eq. (3.6) has been solved by HPM [30], ADM [28], RBF-DQ method
[19]and HFC method [18]. We applied the presented method to solve this and in
Table 11 compared our results with RBF-DQ method [19] and HFC method [18].
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Table 11. Comparison of the absolute errors among the presented
method (a = 10, h = 0.1 ) and [18, 19], for Example 3.6 .

xi our method RBF-DQ[19] HFC[18]
0.1 5.00e(−20) 1.36e(−11) 1.82e(−6)
0.5 7.10e(−19) 2.39e(−9) 1.41e(−6)
1 2.60e(−18) 3.23e(−8) 1.25e(−6)
2 4.00e(−18) 2.49e(−6) 6.93e(−7)
3 6.20e(−17) 8.51e(−5) 7.58e(−8)
4 2.76e(−16) 4.86e(−5) 3.07e(−7)
5 6.30e(−16) 1.78e(−4) 3.21e(−7)
6 1.08e(−15) 7.51e(−4) 9.74e(−8)
7 7.50e(−16) 2.91e(−4) 2.05e(−7)
8 3.30e(−16) 1.27e(−5) 7.36e(−7)
9 3.44e(−15) 3.26e(−7) 4.61e(−6)
10 4.80e(−15) 1.52e(−10) 1.24e(−5)

4. Conclusion

The main focus of this paper was to find a simple numerical algorithm for the Lane-
Emden type initial value problem which occurs in some problem in mathematical
physics and astrophysics. Based upon a compact finite difference scheme, we received
an accurate and efficient method to approximate the solution of Lane-Emden equa-
tion.This numerical solution was obtained by solving a nonlinear system of equations.
The results confirmed that the proposed method is accurate and efficient.
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