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Abstract This article is concerned with using a finite difference method, namely the θ-methods,
to solve the diffusion-convection equation with piecewise constant arguments.The
stability of this scheme is also obtained. Since there are not many published re-
sults on the numerical solution of this sort of differential equation and because of
the importance of the above equation in the physics and engineering sciences, we
have decided to study and present a stable numerical solution for the above men-
tioned problem. At the end of article some experiments are done to demonstrate the
stability of the scheme. We also draw the figures for the numerical and analytical
solutions which confirm our results.The numerical solutions have also been compared
with analytical solutions.
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1. Introduction

The diffusion-convection equation or advection-diffusion equation is one of the most
important partial differential equations in modeling of the real world phenomena, like
biology, mechanics, and electronics.

In general, the applications of this equation lie in the fluid dynamics, heat trans-
fer and mass transfer. There are many numerical models for solving these sort of
equations in the literature, for example Dehghan [2, 3], Mohebbi and Dehghan [6]
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have developed numerical methods for solving one and three-dimensional advection-
diffusion equations. In this article, we study the diffusion-convection equation with
piecewise constant argument.

The studies of differential equations with piecewise continuous arguments (EPCA)
were initiated by Wiener [14], Cook and Wiener [1], and Shah and Wiener [9]. In the
book of Wiener [14], the general theory for EPCA has been investigated. Wiener in
[14], showed that partial differential equations (PDE) with piecewise constant time
naturally arise in the process of approximating PDE by using piecewise constant
arguments. In chapter 3 of the Wiener’s book [14], we see that,

“if in the equation
ut = a2uxx − bu,

which describes heat flow in a rod with both diffusion a2uxx along the rod and heat
loss (or gain) across the lateral sides of the rod, the lateral heat change is measured
at discrete times, then we get an equation with piecewise constant argument (EPCA)

ut(x, t) = a2uxx(x, t)− bu(x, nh), t ∈ [nh, (n+ 1)h] , n = 0, 1, ..., (1.1)
where h > 0 is some constant. This equation can be written in the form

ut (x, t) = a2uxx (x, t)− bu (x, [t/h]h) ,

where [.] designates the greatest-integer function. The diffusion-convection equation
ut = a2uxx − rux describes, for instance, the concentration u (x, t)x of a pollutant
carried along in a stream moving with velocity r. The term a2uxx is the diffusion
contribution and −rux is the convection comonent. If the convection part is measured
at discrete time nh, the process results in the equation

ut(x, t) = a2uxx(x, t)− rux (x, [t/h]h) .

These examples indicate at the considerable potential of EPCA as an analytical and
computational tool in solving some complicated problems of mathematical physics.
Therefore, it is important to investigate boundary-value problems (BVP) and initial-
value problems (IVP) for EPCA in partial derivatives, and explore the influence of
certain discontinuous delays on the behavior of solutions to some typical problems of
mathematical physics.”

In the literature, considerable works have been done on the study of the (EPCA).
Some of the important works in the theoretical and numerical methods are listed be-
low.

Theoretical works:
1. Generalized solutions of functional differential equations, a book published in

1993 [14].
2. Boundary value problems for partial differential equations with piecewise con-

stant delay [15].
3. Partial differential equations with piecewise constant delay [16].
4. A survey of partial differential equations with piecewise continuous arguments

[18].
5. A wave equation with discontinuous time delay [17].
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6. Bounded solutions of nonlinear parabolic equations with time delay [7].
7. Almost periodic solutions of nonlinear equations with time delay [8].
8. Existence, computability, and stability for solutions of the diffusion equation

with general piecewise constant argument [11].
Numerical works:
9. Analytical and numerical stability of partial differential equations with piecewise

constant arguments [12].
10. Stability of θ-methods [4, 5, 10].
11. Stability analysis [13].
12. Retarded differential equations with piecewise constant delay [1].
13. Advanced differential equations with piecewise constant argument deviations

[9].
In this work, we consider the following problem ut (x, t) = a2uxx (x, t)− bux (x, [t]) , t > 0,

u (0, t) = u (1, t) = 0,
u (x, 0) = v (x) ,

(1.2)

where a, b ∈ R, u : Ω → R, v : [0, 1] → R, and [.] designates the greatest integer
function. The main goal of the work is to investigate the stability of numerical
solution for 1.2 and obtaining an approximate analytical solution for comparison with
numerical results.
This paper is organized as follows.

In Section 2, the existence of the solution and the conditions under which the
analytical solution of 1.2 is asymptotically stable are presented and also the formula
of the analytic solution of 1.2, which has been found in [14], is provided.

In Section 3, we provide the numerical stability analysis for the θ-methods to 1.2,
using the similar methods in [12, 18].

In Section 4, some numerical experiments are presented, that support our analysis
and confirm the results. Also, in this section, we managed to draw our numerical
solution for comparison with the analytical solutions from [14].

2. Analytic solution and stability conditions

Definition 2.1. ([14]) A solution of 1.2 is a function u (x, t) satisfies the following
conditions :
(i) u (x, t) is continuous in Ω = [0, 1]× [0,∞),
(ii) The partial derivative ut, ux, uxx exist and are continuous in Ω with the possible
exception of the points (x, nh), where one- sided derivatives exist (n = 0, 1, 2....),
(iii) u (x, t) satisfies ut(x, t) = a2uxx(x, t)−bux (x, [t]) in Ω, with the possible exception
of the points (x, nh), and conditions

u (0, t) = u (1, t) = 0, u (x, 0) = v (x) .

Definition 2.2. ([14]) If any solution u (x, t) of 1.2 satisfies lim
t→∞

u (x, t) = 0 then the
zero solution of 1.2 is called asymptotically stable.
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2.1. Analytic solution. ([14]) Let un(x, n) be the analytic solution of (1.2) for t ∈
[n, n+ 1), then the analytic solution under the conditions is

un (x, t) = un (x) +

∞∑
j=1

√
2Tnj (nh)

(
1− e−a2π2j2(t−nh)

)
sin (πjx)

a2π2j2
, (2.1)

where

Tnj (nh) = −a2π2j2
√
2

∫ 1

0

un (x) sin (πjx) dx+ bπj
√
2

∫ 1

0

un (x) cos (πjx)dx,

and un (x) = un (x, nh).
Given the initial function u (x, 0) = u0 (x), we can find the coefficients T0j (0) and the
solution u0 (x, t) on 0 ≤ t ≤ h.
Furthermore, continuity of the solution u (x, t) implies

un (x, (n+ 1)h) = un+1 (x, (n+ 1)h) = un+1(x).

Since u0 (x, h) = u1 (x), we can calculate the coefficient T1j(h) and the solution
u1(x, t) on h ≤ t ≤ 2h. By the method of steps the solution can be extended to
any interval [nh, (n+ 1) h].

Remark 2.3. ([14]) According to Definition 2.2 and formula 2.1, the zero solution
of 1.2 is asymptotically stable if and only if

lim
n→∞

un (x, t) = 0, (2.2)

and 2.2 holds if

−a2π2 < b < a2π2 e
a2π2h + 1

ea2π2h − 1
. (2.3)

3. The stability of numerical solution

In this section, the numerical asymptotic stability of θ-methods for 1.2 is discussed.

3.1. θ-methods. Let ∆x and ∆t are step-sizes of spatial and time directions which
satisfy ∆x = 1

p and ∆t = 1
m , respectively, where p,m ≥ 1 are positive integers.

Denote the spatial and time nodes as xi = i∆x and tn = n∆t, respectively, and un
i

as an approximation to u (xi, tn). Applying the θ-methods to 1.1, we have

un+1
i −un

i

∆t = θ

(
a2

(
un+1
i+1 −2un+1

i +un+1
i−1

∆x2

)
− b

(
uh(xi+1,[tn+1])−uh(xi,[tn+1])

∆x

))
+(1− θ)

(
a2

(
un
i+1−2un

i +un
i−1

∆x2

)
− b

(
uh(xi+1,[tn])−uh(xi,[tn])

∆x

))
,

un
0 = un

p = 0, n = 0, 1, 2, ...,
u0
i = v (xi) , i = 0, 1, 2, ..., p,

(3.1)

where uh (xi, [tn]) is an approximation to u (xi, [tn]). If we denote n = km + l
(l = 0, 1, ....,m− 1, k = 0, 1, 2, · · ·), then both uh (xi, [tn]) and uh (xi, [tn+1]) can be
defined as ukm

i according to Definition 2.1.
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Let r1 = ∆t
∆x2 and r2 = ∆t

∆x , then 3.1 can be written as

− a2θr1u
km+l+1
i−1 +

(
1 + 2a2θr1

)
ukm+l+1
i

− a2θr1u
km+l+1
i+1 = a2 (1− θ) r1u

km+l
i−1

+
(
1− 2a2 (1− θ) r1

)
ukm+l
i

+ a2 (1− θ) r1u
km+l
i+1 − br2

(
ukm
i+1 − ukm

i

)
, (3.2)

and let i = 1, 2, ...., p− 1, then 3.2 yields as
1 + 2a2θr1 −a2θr1 · · · 0 0
−a2θr1 1 + 2a2θr1 · · · 0 0

...
...

. . .
...

...
0 0 · · · 1 + 2a2θr1 −a2θr1
0 0 · · · −a2θr1 1 + 2a2θr1





ukm+l+1
1

ukm+1+1
2

...

...
ukm+l+1
p−1



=


σ a2 (1− θ) r1 · · · 0 0

a2 (1− θ) r1 σ · · · 0 0
...

...
. . .

...
...

0 0 · · · σ a2 (1− θ) r1
0 0 · · · a2 (1− θ) r1 σ





ukm+l
1

ukm+l
2

...

...
ukm+1
p−1



+br2


1 −1 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 −1
0 0 · · · 0 1





ukm
1

ukm
2
...
...

ukm
p−1

 , (3.3)

where σ = 1− 2a2 (1− θ) r1.
Denote un =

(
un
1 , u

n
2 , ..., u

n
p−1

)T , n = 0, 1, 2, ... and v(x) =
(
v(x1), v(x2), ... , v(xp−1)

)T
and (p− 1)× (p− 1) triple-diagonal matrix F1 = diag (−1, 2,−1) and

F2 =



1 −1 · · · 0 0
0 1 −1 · · · 0
... 0

. . . . . .
...

0 · · ·
. . . . . . −1

0 0 · · · 0 1

 .

Then 3.3 can be written as(
I + a2θ r1F1

)
ukm+l+1 =

[
I − a2 (1− θ) r1 F1

]
ukm+l + br2F2 u

km,
u0 = v (x) .

(3.4)
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3.2. Stability analysis of θ-methods.

Definition 3.1. ([12]) If any solution of 3.2 satisfies

lim
n→∞

un
i = 0, i = 1, 2, ....p,

then the zero solution of 3.1 is called asymptotically stable.

Lemma 3.2. The matrix F1 is a positive definite matrix, with the eigenvalues
λF1 = 4 cos2 kπ

2p , k = 1, 2, ..., p− 1.

From 3.4, we can get

ukm+l+1 = Rukm+l + Sukm, l = 0, 1...,m− 1, (3.5)

where {
R =

(
I + a2θ r1F1

)−1 [
I − a2 (1− θ) r1F1

]
,

S = br2
(
I + a2θ r1F1

)−1
F2.

Iteration of 3.5 gives

ukm+l+1 =
(
Rl+1 +

(
Rl +Rl−1 + ...+R+ I

)
S
)
ukm

=
(
Rl+1 +

(
Rl+1 − I

)
(R− I)

−1
S
)
ukm.

After simplifying

(R− I)
−1

S = − b

a2
∆xF3,

where

F3 =



1
2 1 · · · 0 0
0 1

2 1 · · · 0
... 0

. . . . . .
...

0 · · ·
. . . . . . 1

0 0 · · · 0 1
2

 ,

we have

u(k+1)m = Gukm, (3.6)

where

G =

[
Rm + (Rm − I)

(
− b

a2
∆xF3

)]
.

From 3.6, we know that the zero solution of 3.4 is asymptotically stable if and only if
the eigenvalue of matrix G satisfies

|λG| < 1. (3.7)

So, it is sufficient to have,

max |λG| < 1. (3.8)
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For convenience, let

Q =
1− a2 (1− θ) r1λF1

1 + a2θ r1λF1

,

in which Q is an eigenvalue of matrix R. We know that, λF3 = 1
2 . So inequality 3.8

gives,
max |λG| = max

{∣∣Qm + (Qm − 1)
(
− b∆x

2a2

)∣∣}
≤ max

{
|Qm|+ |Qm − 1|

∣∣− b∆x
2a2

∣∣}
< 1.

(3.9)

Assume
∣∣− b∆x

2a2

∣∣ < 1 then we have two cases. m is even or odd. The inequality 3.9 is
equivalent to −1 < Q < 1 for m is even and 0 < Q < 1 when m is odd. Since Q < 1,
then, it is sufficient we investigate the conditions Q > −1 if m is even and Q > 0
when m is odd.

Therefore, we have the following theorem.

Theorem 3.3. Under the conditions 2.3, −2a2

∆x < b < 2a2

∆x and

m is even, r1 ̸= 1
a2λF1

(1−θ) and
{

r1 < min 2
a2λF1

(1−2θ) , 0 ≤ θ < 1
2 ,

r1 > 0 1
2 ≤ θ ≤ 1,

or
m is odd, and r1 < min 1

a2λF1
(1−θ) ,

the zero solution of 3.3 is asymptotically stable.

Remark 3.4. If Qm = 0, then the corresponding fully implicit finite difference scheme
is asymptotically stable unconditionally.

4. Numerical experiments

We divide this section into two parts.
Part 1. In this part, we will give two examples for investigating the results in the

article. It is easy to verify that the coefficients in examples 4.1 and 4.2 satisfy the
conditions of the theorem 3.3. In Figs.1-2, we plot the numerical solutions of example
4.1 using (θ = 0.7,m = 100, p = 20) and (θ = 0.4,m = 400, p = 15), respectively.
The analytical solution of this example is also shown in Fig.3 for (m = 100, p = 20).
Fig.4 shows the error of this computation. Figs.5-6 show the numerical and analytical
solutions of example 4.2 respectively, using (θ = 0.8,m = 100, p = 20). To show the
accuracy of the results, in this case, we also plot the errors in Fig.7.

In all cases the error formula is
Error = |U(x, t)− u(x, t)|, (4.1)

where U (x, t) is an approximation for the exact solution using formula (2.1) and
u (x, t) is numerical solution.

Example 4.1. Consider the following problem
ut (x, t) = 4uxx (x, t)− 5ux (x, [t]) ,
u (0, t) = u (1, t) = 0,
u (x, 0) = sinπx.
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Figure 1. The numerical solution with m = 100, p = 20 and θ = 0.7.
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Figure 2. The numerical solution with m = 400, p = 15 and θ = 0.4.

0
0.5

1
1.5

2
2.5

3

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t
x

u(
x,

t)

Example 4.2. Consider the following problem with larger "a" and "b", compared with
the previous example.

ut (x, t) = 100uxx (x, t)− 80ux (x, [t]) ,
u (0, t) = u (1, t) = 0,
u (x, 0) = sinπx.

Part 2. In this part, we will give one example. In this example, the coefficients
don’t hold the condition 2.3. From Figs.8-9, we can see the numerical and the ana-
lytical solutions are not stable. So, this example confirms our theoretical results in
the present article.
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Figure 3. The analytiical solution with m = 100 and p = 20.
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Figure 4. The graph of error with m = 100 and p = 20.
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Example 4.3. In this example, we choose b = 50, while, based on the condition 2.3,
b should reside in the interval (-39.4784 , 39.4784).

ut (x, t) = 4uxx (x, t)− 50ux (x, [t]) ,
u (0, t) = u (1, t) = 0,
u (x, 0) = exp(πx).
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Figure 5. The numerical solution with m = 100, p = 20 and θ = 0.8.
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Figure 6. The analytical solution with m = 100 and p = 20.

0
0.5

1
1.5

2
2.5

3

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t
x

U
(x

,t)



CMDE Vol. 8, No. 3, 2020, pp. 573-584 583

Figure 7. The graph of error with m = 100 and p = 20.
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Figure 8. The numerical solution with m = 150 , p = 20 and θ = 0.6.
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Figure 9. The analytical solution with m = 100 and p = 20.
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5. Conclusions

In the present paper, the diffusion-convection equation with piecewise constant ar-
guments is solved by the θ-methods. An important part of this paper is to investigate
the stability that has been described in details in the Theorem 3.3. To show the
accuracy of the results in all cases, we have plotted figures for errors. As figures show,
the errors tend to zero.

Finally, to verify the condition of stability, we have used examples with different
parameters. All the forms claim that the equations which hold in the condition of
stability, have stable analytical and numerical solutions.
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