تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,964 |
تعداد دریافت فایل اصل مقاله | 15,213,957 |
A pseudo-spectral based method for time-fractional advection-diffusion equation | ||
Computational Methods for Differential Equations | ||
مقاله 4، دوره 8، شماره 3، آبان 2020، صفحه 454-467 اصل مقاله (158.85 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.29307.1414 | ||
نویسندگان | ||
Ali Shokri* ؛ Soheila Mirzaei | ||
Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan, Iran. | ||
چکیده | ||
In this paper, a pseudo-spectral method with the Lagrange polynomial basis is proposed to solve the time-fractional advection-diffusion equation. A semi-discrete approximation scheme is used for conversion of this equation to a system of ordinary fractional differential equations. Also, to protect the high accuracy of the spectral approximation, the Mittag-Leffler function is used for the integration along the time variable. Some examples are performed to illustrate the accuracy and efficiency of the proposed method. | ||
کلیدواژهها | ||
Time-fractional advection-diffusion equations؛ Mittag-Leffler functions؛ Fractional derivative؛ Pseudo-spectral method | ||
آمار تعداد مشاهده مقاله: 440 تعداد دریافت فایل اصل مقاله: 545 |