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Abstract The area of discontinuous dynamical systems is almost a young research area, and
the enthusiasm and necessity for analyzing these systems have been growing. On the

other hand, chaos appears in a rather wide class of discontinuous systems. One of the

most important properties of chaos is the sensitive dependence on initial conditions.
Also, one of the most effective ways to diagnosis chaotic systems is defining Lyapunov

exponents of these systems. Also, defining and calculating Lyapunov exponents
for all discontinuous systems are real challenges. This paper is devoted to define

Lyapunov exponents for discontinuous dynamical systems of Filippov type in order

to investigate chaos for these systems.
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1. Introduction

Nonlinear dynamical systems can have either continuous or discontinuous nonlin-
earities or both. Indeed, nonlinear systems dealing with impact, friction, freeplay
switching, and so on are discontinuous. Furthermore, discontinuous dynamical sys-
tems have many applications in various fields like mechanical and electrical engineer-
ing, biomechanics, control theory, economics, ecology, etc. By using this kind of
differential equations, dynamical phenomena can be modelized more realistically and
reasonably.

One important type of discontinuous systems is Filippov systems. The vector field
of these systems is discontinuous but the trajectories of these systems are continuous
with respect to the time t. Filippov systems consist of at least one discontinuity
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boundary which divides the phase space into disjoint regions with different dynamics.
Such systems appear in applications such as control systems with switching control
laws, or population dynamics; see [6]. Moreover, Filippov systems can be used in
modelling of mechanical systems exhibiting dry friction [6]. Furthermore, Filippov in
[8, 9] has shown that many results in the classical theory of differential equation is valid
also for differential equations with discontinuous right-hand sides. In recent years,
remarkable researches and studies have performed in investigating the discontinuous
dynamical system and developing the theory of these systems. For more information
see [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18].

Chaos is a generic property of many dynamical systems such as in electronic cir-
cuits, chemical reactions, lasers, mechanical devices, and a lot of models of biology,
economics and physics; see [7]. There are papers concluding chaos in a rather wide
class of discontinuous systems analytically and using Melnikov method; for example
see [3, 7, 13]. On the other hand, one of the most important properties of chaos is
the sensitive dependence on initial conditions. To measure this property, we use Lya-
punov exponent concept. In fact, the most useful way to diagnosis chaotic systems
is defining Lyapunov exponents of these systems. The calculation of Lyapunov expo-
nents for continuous systems is well developed, while it is not done yet for all kinds of
discontinuous systems. Furthermore, the enthusiasm and necessity for defining Lya-
punov exponents of discontinuous dynamical systems as a tool of investigating chaos
in these systems have been growing. To the best of our knowledge, defining and cal-
culating Lyapunov exponents for all discontinuous systems represent real challenges.
However, the calculation of Lyapunov exponents for some discontinuous systems is
performed, for instance, see [5, 10, 12, 14, 15, 16, 18]. The present work attempts
to define Lyapunov exponents for discontinuous dynamical systems of Filippov type.
This can help us to investigate chaos for these systems.

This paper has organized in two sections. In the first section, we give those defi-
nitions and theorems that are going to use in the next section. The second section is
devoted to study chaos for Filippov systems by the aid of defining Lyapunov exponents
for these systems.

2. Preliminaries

2.1. Discontinuous dynamical systems. Here, we give the definition of Filippov
systems and also state some concepts and basic results which are important for our
purposes in this paper.

In [8], Filippov systems are introduced as discontinuous dynamical systems consist
of two or more smooth vector fields that are separated by discontinuity boundaries.
For simplicity, we assume that there is just one discontinuity boundary. The formal
definition of such systems given in [9] is as follows.

Let us consider the system

ẋ = f(t, x) (2.1)

x(t0) = x0,
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in which f : U −→ Rn, and U = J × U ′ ⊆ R × Rn is a domain. Moreover, suppose
that f satisfies the following assumptions:

(I) f has the following form

f(t, x) =

{
f−(t, x); x ∈ S− , t ∈ J
f+(t, x); x ∈ S+ , t ∈ J

, (2.2)

such that U ′ is divided into two open and disjoint sets S− and S+ by a hyper-
surface Σ. The discontinuity boundary Σ and sets S+ and S− can be defined
by a scalar function h : U ′ −→ R, h ∈ Cr(U ′,R), r ≥ 1 as

S− = {x ∈ U ′ | h(x) < 0}, (2.3)

S+ = {x ∈ U ′ | h(x) > 0}, (2.4)

and

Σ = {x ∈ U ′ | h(x) = 0}. (2.5)

(II) The normal of the hypersurface Σ, given by n(x) =
[
Dh(x)

]T
is chosen such

that it is always nonzero, i.e., n(x) 6= 0 for each x ∈ Σ.

(III) There are functions g± : J × V ± −→ Rn with the features

(1) S± ∪ Σ ∈ V ±, where V ± are domain in Rn,

(2) g± ∈ Cr(J × V ±,Rn), r ≥ 1,

(3) g±(t, x) = f±(t, x), ∀t ∈ J, x ∈ S±.
This means the existence of Cr-extensions of f±. Therefore f± must be
Cr, too.

Now, let us define the set-valued extension of system (2.2) for each t ∈ J as follows

F (t, x) =


f−(t, x); x ∈ S−

{(1− λ)g−(t, x) + λg+(t, x),∀λ ∈ [0, 1]}; x ∈ Σ

f+(t, x); x ∈ S+.

(2.6)

Then, the system (2.1) can be considered as a differential inclusion:

x′ ∈ F (t, x), (2.7)

which is known as Filippov’s convex method.

Definition 2.1 (Fillipov solution). Function x : I −→ Rn, at which I ⊆ R is an
interval, is called a solution of differential inclusion(2.7) if x is almost every where
continuous and x′(t) ∈ F (t, x(t)), for almost all t ∈ I,
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The assumptions (I)− (III) assure that differential equations (2.7) and (2.1) have
a solution in the sense of Filippov solution; for more details see [2, 9, 11].

Definition 2.2. Suppose that x : I −→ Rn is a solution of (2.1) which reaches to
the discontinuity boundary Σ at the point xΣ ∈ Σ and time tΣ ∈ I, i.e., x(tΣ) = xΣ.
We say that solution x(t) crosses the hypersurface Σ transversally at xΣ if

nT (xΣ) g−(tΣ, xΣ)nT (xΣ) g+(tΣ, xΣ) > 0, (2.8)

where n(x) =
[
Dh(x)

]T
; see [9, 11].

2.2. Lyapunov exponents for continuous systems.

Definition 2.3. Consider the following dynamical system

ẋ = f(x(t)); x(t0) = x0, f ∈ C1. (2.9)

The time evaluation of a tangent vector δx(t) at x(t) is represented by linearizing
equation (2.9) as follows

δẋ = F (x(t))δx(t), (2.10)

where

F (x(t)) =
∂f(x)

∂xT

∣∣∣
x=x(t)

. (2.11)

Then, the spectrum of the Lyapunov exponents λi is given for some different initial
conditions δxi(t) as

λi = limt→∞
1

t
Ln
‖δx(t)‖
‖δxi(t0)‖

. (2.12)

For more information in this direction see [1, 4, 12, 17].

3. Lyapunov exponents for Filippov systems

Here we are going to define Lyapunov exponents for discontinuous dynamical sys-
tems of Filippov type.
Consider the following Filippov system

ẋ =

{
f−(x); x ∈ S−, f− ∈ C1

f+(x); x ∈ S+, f+ ∈ C1
, (3.1)

such that

S+ = {x ∈ U ⊆ Rn; h(x) > 0}, (3.2)

S− = {x ∈ U ⊆ Rn; h(x) < 0}, (3.3)

where h : U ′ −→ R satisfies in the hypothesis of Section 2.1. Moreover, the disconti-
nuity boundary Σ which separates two regions S+ and S− is

Σ = {x ∈ U ⊆ Rn; h(x) = 0}, (3.4)
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Figure 1. Nearby trajectories x(t) and x̂(t) of system (3.1)

for more details see Section 2.1.

Here we suppose that orbits of (3.1) transversally cross the discontinuity boundary
Σ, i.e., we assume that the orbits of (3.1) satisfy in relation (2.8) of Definition 2.2.

Now for computing the complete spectrum of Lyapunov exponents of the system
(3.1), we have to linearize equation (3.1). Indeed our aim is doing a linearization
similar to equation (2.10) for the Filippov system (3.1) by using the properties of
discontinuous systems. For this purpose, we do the following process:

Let x(t) be a solution of system (3.1) with x(t0) = x0 ∈ S−. Moreover, it is
assumed that x(t) reaches the boundary Σ at time t1 > t0. For this solution, we can
write 

ẋ(t) = f−(x(t)); t0 ≤ t < t1

h(x(t1)) = 0; t = t1

ẋ(t) = f+(x(t)); t > t1

. (3.5)

Note that the existence of transversality conditions for all solutions of system (3.1)
plays an important role in our process. Here transversality condition for x(t) results

∃t+1 > t1 s.t. h(x(t+1 )) > 0. (3.6)

We put

tinf1 := inf{t+1 |h(x(t+1 )) > 0}. (3.7)

To check the chaotic behaviors of the system (3.1), we have to investigate the behavior
of trajectories that are close to the solutions of the system (3.1). So, discuss the
behavior of nearby trajectories, we compare x(t) with a trajectory x̂(t) such that
x̂(t0) = x0 + δx0 ∈ S−. As well as two trajectories x(t) and x̂(t), satisfies in the
following relation

x̂(t)− x(t) = δx(t), ∀t (3.8)

Let x̂(t) touches the discontinuity boundary at time t̂1 > t0, where t̂1 = t1 + kt.
Without loss of generality, we can assume that kt > 0. By this assumption, first the
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trajectory x(t) reaches to the discontinuity boundary Σ.
Now for the trajectory x̂(t) we can write

˙̂x(t) = f−(x̂(t)); t0 ≤ t < t̂1

h(x̂(t̂1)) = 0; t = t̂1

˙̂x(t) = f+(x̂(t)); t > t̂1

. (3.9)

For t−1 < t1 and t̂+1 > t̂1 we define

δx− := δx(t−1 ) = x̂(t−1 )− x(t−1 ),

δx+ := δx(t̂+1 ) = x̂(t̂+1 )− x(t̂+1 ).
(3.10)

Applying a Taylor series expansion up to the first order terms to h(x̂(t̂1)) yields

0 = h
(
x̂(t̂1)

)
= h

(
x̂(t1 + kt)

)
≈ h

(
x̂(t1) + kt. ˙̂x(t1)

)
(3.11)

= h
(
x̂(t1) + kt.f−

(
x̂(t1)

))
x(t) is continuous for t0 ≤ t < t̂1 and also by the first equation of system (3.5), we
can obtain x(t−1 ), for some t−1 < t1 sufficiently close to t1. This implies that the last
line of (3.11) becomes

≈ h
(
x̂(t−1 ) + kt.f−

(
x̂(t−1 )

))
= h

(
x(t−1 ) + δx− + kt.f−

(
x(t−1 ) + δx−

))
≈ h

(
x(t−1 ) + δx− + kt

[
f−
(
x(t−1 )

)
+ δx−.

∂f(x)

∂xT

∣∣∣
x=x(t−1 )

])
≈ h

(
x(t−1 )

)
+
∂h(x)

∂xT

∣∣∣
x=x(t−1 )

.
[
δx− + kt.f−(x(t−1 ))

]
≈ H

(
x(t−1 )

)
.
[
δx− + kt.f−(x(t−1 ))

]
,

where

H
(
x(t−1 )

)
=
∂h(x)

∂xT

∣∣∣
x=x(t−1 )

. (3.12)

Therefore,

H
(
x(t−1 )

)
.
[
δx− + kt.f−(x(t−1 ))

]
= 0. (3.13)

Hence we have

kt = − H(x(t−1 )).δx−

H(x(t−1 )).f−(x(t−1 ))
. (3.14)
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On the other hand, for t̂+1 sufficiently close to t̂1

x̂(t̂+1 ) = x̂(t+1 + kt) ≈ x̂(t+1 ) + kt. ˙̂x(t+1 ) = x̂(t+1 ) + kt.f−(x̂(t+1 )) (3.15)

= x̂(t+1 ) + kt.f−
(
x(t+1 ) + δx(t+1 )

)
≈ x̂(t+1 ) + kt.f−

(
x(t+1 )),

where t1 < t+1 < t̂+1 . Also,

x(t̂+1 ) = x(t+1 + kt) ≈ x(t+1 ) + kt.ẋ(t+1 ) = x(t+1 ) + kt.f+(x(t+1 )), (3.16)

where t1 < t+1 . Thus,

δx+ = x̂(t̂+1 )− x(t̂+1 ) = δx(t+1 ) + kt
[
f−(x(t+1 ))− f+(x(t+1 ))

]
. (3.17)

By substituting kt from (3.14) we have

δx+ = δx(t+1 )− H(x(t−1 )).δx−

H(x(t−1 )).f−(x(t−1 ))
.
[
f−(x(t+1 ))− f+(x(t+1 ))

]
. (3.18)

The above computations which led to calculate δx+ and kt, will help us to perform our
desired linearization for Filippov system (3.1). In fact, by the aid of these calculations,
we can define a linearization for the system (3.1) in the form of the following set{

δẋ = F−(x(t))δx; t0 ≤ t < t1

δẋ = F+(x(t))δx; t > t1
, (3.19)

in which F− and F+ and also initial conditions for both equations must be deter-
mined. Notice that the first equation of (3.19) is the linearization of the system (3.1)
before the discontinuity, and the second one is the linearization of (3.1) after the
discontinuity. We also need a suitable transition condition of the linearized equations
at the instant of discontinuity. Putting

F−(x(t)) =
∂f−(x)

∂xT

∣∣∣
x=x(t)

, (3.20)

and considering δx(t0) = δx0 as an initial condition for the first equation of (3.19), will
complete the first part of linearization. To accomplish the second part of linearization,
if we set

F+(x(t)) =
∂f+(x)

∂xT

∣∣∣
x=x(t)

, (3.21)

just defining a reasonable initial condition for the second equation of (3.19) will be
needed. The second equation of (3.19) is defined for t > t1, and the time starts from

tinf1 . Therefore by choosing δx(tinf1 ) = δx+, we can find a suitable initial condition
for the second part of linearization. Moreover, the relation (3.18) is the transition
condition of the linearized equations at the instant of discontinuity.
Due to the mentioned explanations, the following set together with the transition
condition (3.18) can describe a linearization for the Filippov system (3.1){

δẋ = F−(x(t))δx; δx(t0) = δx0, t0 ≤ t < t1,

δẋ = F+(x(t))δx; δx(tinf1 ) = δx+, t > t1
, (3.22)

where F−, F+ and δx+ are stated by the relations (3.20), (3.21) and (3.18).
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Using this linearization, we can calculate the spectrum of Lyapunov exponents in
the case of Filippov systems. It should be mentioned that here we supposed kt > 0.
Notice that the same results can be obtained for kt < 0.

4. Conclusion

Due to the wide applications of Filippov systems, here we defined Lyapunov ex-
ponents for these systems in order to investigate chaos for them. In fact to compute
the complete spectrum of Lyapunov exponents of the discontinuous system (3.1),
we performed a linearization for that by the aid of the properties of discontinuous
systems.
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