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Abstract This paper is devoted to applying the sixth-order compact finite difference approach
to the Helmholtz equation. Instead of using matrix inversion, a discrete sinusoidal
transform is used as a quick solver to solve the discretized system resulted from
the compact finite difference method. Through this way, the computational costs
of the method with large numbers of nodes are greatly reduced. The efficiency and
accuracy of the scheme are investigated by solving some illustrative examples, having
the exact solutions.
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1. INTRODUCTION

The Helmholtz equation, is named after Hermann von Helmholtz, as a partial
differential equation, has the following form

Au+ k*u = g, (1.1)

where A is the Laplacian operator, k is the wave number, unknown u usually rep-
resents a pressure field in the frequency domain, and ¢ denotes the source function
[35]. The Helmholtz equation governs some important physical phenomena, such
as the potential in time-harmonic acoustic and electromagnetic fields, acoustic wave
scattering, noise reduction in silencers, water wave propagation, membrane vibration,
and radar scattering [23]. This equation appears in a natural way in the solution of
the wave equation, where k = iw/cp is the wave number in a dispersive medium (w
is the wave frequency and ¢y the speed of light or sound) or in the solution of the
linearised Poisson-Boltzmann equation, where k = ¢+/878¢c/e (¢ is the charge of an
ion, ¢ the ionic concentration, € the dielectric constant of the solvent, and S denotes
the inverse thermal energy). Due to its importance, great effort has been made to
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develop fast and accurate methods to solve it[30]. It has been solved numerically by
finite difference methods [4, 11, 14, 23, 28, 30, 35, 36, 37], finite element methods
[2, 3, 5, 13, 29, 34, 39] and spectral method [21].

There are several ways to apply a finite difference approximation to Eq. (1.1). In
the usual finite difference method, a second-order spatial derivative is approximated
by central difference quotient which is of the second order accuracy [1]. In order to
increase the order of accuracy of an approximation by the traditional finite-difference
methods, the computational stencil must be widened. Whilst, adding more nodes and
using smaller mesh sizes, require more computation time and storage space. This is
considered a major disadvantage of a finite difference approach. Thereby, to obtain
satisfactory numerical results with reasonable computational cost, high-order com-
pact finite difference (CFD) methods are developed. Compared to the traditional
explicit finite difference schemes of the same order, compact schemes are significantly
more accurate, along with the benefit of using smaller stencil sizes [9]. CFD scheme
was proposed for the first time by Collatz in 1966 [7]. Within the recent fifty years,
various versions of the compact schemes have been analyzed and implemented suc-
cessfully by many researchers, e.g. see [6, 8-10, 12, 15-20, 22-28, 30-33, 35, 36, 38]. A
comprehensive investigation of the CFD methods has been performed in [17].
Solving partial differential equations by CFD schemes results in a tridiagonal or pen-
tadiagonal systems of linear equations. Such systems are usually solved by inversion of
the matrix of coefficients directly. In the present paper, an algorithm which does not
need matrix inversion is proposed for employing high-order CFD schemes to solve the
Helmholtz equation numerically. This algorithm utilizes the fast discrete sinusoidal
transform as a fast solver and makes the application of the compact scheme more
computationally cost-effectiv. It has been proposed in [32] for solving the Poisson
equation. It is also used for Gross—Pitaevskii equation in [33]. In both [32] and [33]
the fourth-order CFD is implemented. Here, the Dirichlet boundary value problem
of the Helmholtz equation in two dimensions is discretized with the sixth-order CFD
method.

The outline of the paper is as follows. Section 2 is devoted to describing the CFD
scheme. In section 3, some formulas of the sixth-order CFD method based on the
fast discrete sine transform are developed. In section 4, the Helmholtz equation in
two dimensions is solved by the proposed method. In section 5, numerical results are
demonstrated. Finally, the conclusions are presented in section 6.

2. THE CFD SCHEME

Consider a uniformly spaced mesh consisting of the grid points zg,...,xny con-
structed by dividing the interval [a, b] into N subintervals [z;, 2;11] so that x;11 —x; =
h,i=10,..,N —1 where h = (b — a)/N is the mesh size. In the standard compact
finite difference formula, a linear combination of the values of the function u(z;) at
three (a few) successive points is approximated by a linear combination of the values
of derivatives of the function at three (a few) successive points, with high accuracy
when the derivatives are known and the function values of u(z;),i =0, ..., N are un-
known, or conversely the function values are known and derivatives are unknown [10].
The general formula of this scheme for approximating the first-order derivative, at
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the internal nodes, is as follows.

Ui42 — Uj—2 U1 — Uj—1
=b a , 2.1
4h + 2h 2.1)
where «, a, and b are the constants to be determined. Notice that u; and u; denote
u(z;) and u'(z;), respectively. An a-family of fourth-order tri-diagonal schemes can

be applied if the following relationships are satisfied.

/ I /
QU;_q + U + QU

2 1
a:§(a+2), b:§(4a—1). (2.2)

In this case, the truncation error of Eq. (2.1) is (4/5!)(3a — 1)h*u(® [17]. Setting
b = 0 and plugging it into Egs (2.2) lead to o« = 1/4, and a = 3/2. As a result, a
CFD scheme with fourth-order accuracy for  is given as the following

1 1 3 Ui+1 — Uj—1

Zu;_l + u; + EU;H 9 : 2 — (2:3)
In order to obtain a sixth-order tridiagonal scheme for u}, consider & = 1/3 which
leads to a = 14/9, and b = 1/9 . Thus, a CFD scheme with sixth-order accuracy for
u} is achieved as follows

1, Ltigo —ui—2 n 14 uipy — Ui-1

1
PRI LS Rl 7 9 2h

An approximation for the second-order derivative at internal nodes is obtained by the
following general CDF formula

(2.4)

_ plat2 = 2u; + ui—2 gLt — 2u; + ui—y
4h? h? ’

where a and b are again the constants that should be determined. An a-family of

fourth-order tridiagonal schemes can be provided when a and b are chosen as

ui_y +uf + augy (2.5)

4 1
a=-(1-a), b= -(10a — 1). (2.6)
3 3

In this case, the truncation error of Eq. (2.5) is (—4/6!)(11a — 2)h*u(® [17]. If

a = 1/10, a = 6/5, and b = 0 are chosen, the CFD scheme with fourth-order

accuracy can be derived for u}, as the following

1 1 6 Uit+1 — 2u1 + Uj—1

Eu;’_l +ug + TOU;/“ =3 02 : (2.7)
Choosing o = 2/11 leads to obtain a sixth-order scheme for u!/. Putting this value

of a into Eq. (2.6) gives a = 12/11, and b = 3/11. As a result, the following CFD

scheme with sixth-order accuracy is obtained for w

3 Uit2 — 2’U;1 + Uj_2

2 2
Syl el =

11 11 4h2
12 Ui+1 — 2“7, —+ Uj—1 (28)
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3. FORMULATION OF THE CFD SCHEME BY THE DISCRETE SINE TRANSFORM

In this section, the second-order partial derivatives with respect to x and y are
approximated by the sixth-order CFD method in combination with the discrete sine
transform. For this purpose, let h, = (b—a)/M, and h, = (c—d)/N be the mesh sizes
in z and y directions, respectively. In this case, the points x; = a+ih,;,i =0,1,..., M
and y; = c+ jhy,i = 0,1,..., N are assumed as the grid points. The values u”

and g” approximate u(z;,y;) and g(x;,y;), respectively. Moreover, the Values ugf

and u Y approximate the second-order partial derivatives gzz (i, y5) and 2 ay % (i, 95),
respectlvely Taking into consideration of the compact finite difference scheme of Eq.
(2.8), the following approximations are obtained

2ui®y + Vgl + 2wty ;=

3 (3.1)
4h2 (UZ 2,7 + 16'LLZ 1,5 34u7;,j + 16ui+17j + Ui+2’j),
2y + 1 4+ 2uly, ) =
(3.2)

3
4h2 (u” 2+ ].6’[1,1 -1 34’[1,1‘7]‘ + 16um’+1 + um-+2).

The two-dimensional discrete sine transform for u;; and its inverse for 4y, are defined
as follows [32]

M-1N-1

zknr . glm
U = Z Z U sin( i —)sin (N ), (3.3)
k=1 i=1
M—-1N-1 ) .
~ 2 2 . tkm . glm
Ukl = 357 2.2 Usj sm(ﬁ)sm(w). (3.4)
Applying (3.3) to Eq. (3.1) leads to
M—-1N-1 (i — 1)kr M—-1N-1 7r il
2 Z Z Oy sin(T) )+ 11 Z Z Uz sin( sin(W)-l-
k=1 1=1 k=1 1=1
2M_1 — T gi ((Z+ 1)k7r) n(]lj)
kl M N -
k=1 I1=1
M—-1N-1 .
3 ~ (i —2)km jlm
@(Z Uy sin( i ) (W)+
k=1 1=1
M—-1N-1 ) M—1N-1
. (i — Dk gl . T jlm
16 Uy sin( 17 )sm(ﬁ) - 34 Z Upy sin( i ) sin( N )+
k=1 I=1 k=1 1=1
M—-1N-1 ) M—-1N-1 ) .
1k l 2)k l
16 22 Upg sin( Z+M) 7T)sm(%) + 2.2 ot sin( Z+M) ﬂ-)sm(%)):
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This equation can be rewritten as

. (t—=1Dknm . ik
; 2 (QSm(T)Jrllsm(ﬁ)Jr
2sin (T sin AT =
3 R (i— 2k _(i—kr
5 (sin( ) + 16 sin( )
4h2 — = M M

After some simplifications, the following equation is obtained

km P 3 2km km =N
(4 cos(ﬂ) +11)ugy = %(cos(ﬁ) + 16 cos(ﬁ) —17)) U,

from which, @} is given as

3 km 2k km
uy = ——(4 — 1)t —_— 1 — ) — 17)ug- .
ug 2h%( COS(M) +11)7 " (cos( i )+ 6COS(M) Ty (3.5)

Similarly, applying the discrete sine transform (3.3) to Eq. (3.2) leads to the following
equation

ey . kT (7= 1)l . kT gl
230 3 s S 411 Y 3 atsinisind +
k=1 I=1 k=1 1=1
M-—1 N—lAyy ’Lkﬂ' (j+1)l7r
2 uy; m(ﬁ) sin( N ) =
k=1 I=1
M—-1N-1
—2)l
4;);2!( Upy sin(——) si ((‘7 N) 7r)+
k=1 I=1
M—-1N-1 M—-1N-1
k — 1)l k l
1637 Y anrsn( o) sin( L) 5037 g sind 0T (AT +
k=1 1=1 k=1 1=1
M—-1N-1 M-1N-1
k 1)i k 2)1
16 Tk sin(%) sin(Y *N) ™+ Uk sm(lMﬂ ) sin( +N) D)
k=1 I=1 k=1 I=1
After some manipulations and simplifying, @}; can be obtained as follows
l 21 l
av — 225<4cos<]$> +11) ! (cos( ) + 16 cos( ) — 17)iiu. (3.6)
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4. APPROXIMATION OF THE SOLUTION OF THE HELMHOLTZ EQUATION

The two-dimensional Helmholtz equation with zero Dirichlet boundary condition
is considered as follows.

Pu 0%*u 9 .

a— e +k'u=g, inQ:=(a,b)x (cd), (4.1)
with boundary condition

u=0, onl:=099Q,

where u = u(z,y) is an unknown, and g = g(x,y) is a given function.
Now, the Helmholtz equation is discretized at the grid point (z;,y;) as follows

ul’ + uyy + k2 Uij = Gij- (4.2)

Applymg the inverse sine transform to this equation yields to the following equations

gt +ul + kg =g, 1<k<M-1,1<I<N-1, (4.3)
where

9 N 7r 1k
Jrl = MN Z i sin( in(%).
k=1 1=1

If Egs.(3.5) and (3.6) are substituted into (4.3), Uy, can be obtained as

. 20k

Ukl = (44)

cos(2Em)+16 cos(£Z)—17

cos( 22 )+16 cos(LZ)—17 2k2)
h2 (4 cos(Ex)+11)

h2(4 cos(LE)+11)

+

Finally, by means of the discrete sine transform (3.3), u;; can be calculated from ;.
It is worth to notice that if one solves the discretized system (4.2) by direct matrix
inversion, then the computational cost will be O(M?N?) while formula (4.4) reduces
the computational cost to O(M Nlog(MN)).

5. NUMERICAL EXPERIMENTS

In this section, a numerical example that includes the Helmholtz problem, with a
constant wave number is presented to illustrate the efficiency of the proposed scheme.
All computations are performed by Matlab 2017. The Helmholtz equation is consid-
ered as follows.

Au + k*u = —k*sin(kx) sin(ky), in Q:= (0,7) x (0, 7), (5.1)
with the boundary condition

u =0, on I' := 09,
where k is assumed as a positive integer. The exact solution to this problem has the
following form [35].

u(z,y) = sin(kz) sin(ky), (z,y) € [0, 7] x [0, 7].
The Lo,-norm is used to measure the error of approximated solution. Numerical

results are shown in Figures 1-4. In both Figures 1 and 2, we take M = N = 64.
Figure 1 shows the approximated solution of the problem (5.1) with & = 30 at the

(=)l
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TABLE 1. Error analysis for & = 30.

M=N 32 64 128 256 512
Proposed method ~ 0.8099 0.0070 1.0015e-04 1.5275e-06 2.4115e-08
Optim. Compact 9 p 4.3584 0.0911 0.0034 1.8977e-04  1.550e-05

TABLE 2. Error analysis for £ = 50.

M=N 64 128 256 512 1024
Proposed method 0.1944 0.0023 3.3215e-05 5.1029e-07 8.1124e-09
Optim. Compact 9 p 17.2907 0.0349 0.0016 9.05639e-05 5.5554e-06

grid points (z;,y;). In Figure 2, the error of the approximated solution is shown.
Maximum error is less than 8 x 1073, In both Figures 3 and, 4 we take M = N = 128.
Figure 3 shows the approximated solution of the problem (5.1) with & = 50 at the
grid points (z;,y;). In Figure 4, the error of the approximated solution is shown.
Maximum error is less than 2.5 x 1073, Furthermore, In Tables 1 and 2, the results
are compared with those reported in [35] where an optimal compact 9 points method
is proposed to solve the Helmholtz equation (5.1). At both tables, number of grid
points are doubly increased. Tables 1 and 2 show that the accuracy of the proposed
method in this study is higher than the optimal compact 9 points method.

FIGURE 1. Approximated solution of problem (5.1) in grid points
(i,y;)(t=1,...,64—1,7 =1,...,64 — 1), with wave number k = 30.
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FIGURE 2. Error in L.,-norm between approximated solution and
exact solution of problem (5.1) at grid points, with wave number
k = 30.

Error

FIGURE 3. Approximated solution of problem (5.1) in grid points
(xi,y;)(t=1,...,128—1,j = 1,...,128 —1), with wave number k = 50.
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FIGURE 4. Error in L.,-norm between approximated solution and
exact solution of problem (5.1) at grid points, with wave number
k = 50.

Error

6. CONCLUSION

Compact finite difference methods are well-known tools to discretize and solve
partial differential equations. Applying such methods for partial differential equations
leads to a tridiagonal or pentadiagonal system of linear equations which is usually
solved by matrix inversion. However, the cost of this method increases when it is
applied to a higher-dimensional problem. In this study, an algorithm, based on the
sixth-order CFD method, is designed for solving the Helmholtz equation with Dirichlet
boundary conditions. This algorithm does not use matrix inversion. It uses the fast
discrete sine transform. This makes a compact scheme more cost-effective. The
numerical results for two-dimensional equations confirm the acuracy of the proposed
sixth-order compact finite difference scheme.
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