تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,287 |
تعداد دریافت فایل اصل مقاله | 15,214,122 |
بررسی تجربی و عددی کامپوزیت تقویت شده با پارچه ی حلقوی-پودی تحت ضربه سرعتبالا | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 11، دوره 51، شماره 2 - شماره پیاپی 95، مرداد 1400، صفحه 93-102 اصل مقاله (2.03 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.9847 | ||
نویسندگان | ||
میثم سروش1؛ کرامت ملک زاده فرد* 2؛ ساناز حسن زاده3؛ مرتضی شهروی4 | ||
1دکتری، دانشکده مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
2استاد، مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
3دکتری، دانشکده نساجی، دانشگاه صنعتی اصفهان، اصفهان، ایران | ||
4دانشیار، مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
چکیده | ||
هدف از پژوهش حاضر، ساخت کامپوزیت تقویتشده با پارچه حلقوی-پودی باقابلیت جذب انرژی بالا و بارگذاری ضربه سرعتبالا و ارائه مدل اجزای محدود برای مطالعه آغاز و گسترش خسارت درون لایه با تمرکز بر استخراج تجربی خواص موردنیاز شبیهسازی است. در پروسه ساخت کامپوزیت، پارچه های بافته شده بر روی ماشین تخت باف حلقوی-پودی، در یک فرآیند پرس حرارتی قرارداده شد تا جزء گرمانرم بهصورت مذاب درآید و بخش ماتریس زمینه کامپوزیت را شکل دهد. بهمنظور پیش بینی نقطه ی آغاز و چگونگی گسترش خسارت ایجادشده در لایه های کامپوزیت برمبنای روش تخریب پیشرونده و مبانی کاهش سفتی بر پایه انرژی چقرمگی شکست استفاده شد. پارامترهای موردنیاز برای مدلسازی در این تحقیق، از قبیل انرژی چقرمگی شکست، بهصورت تجربی و با استفاده از آزمایش کشش فشرده استخراج گردید و در شبیهسازی از آنها استفاده شد. اعتبار سنجی مدل پیشنهادی نیز با استفاده از مقایسه سرعت عامل ضربه زننده قبل و پس از برخورد در آزمایش تجربی ضربه باانرژی در حدود 120 ژول، از طریق شبیهسازی عددی صورت گرفته و اختلاف در حدود 11 درصدی با نتایج آزمایش ضربه مشاهده شد. | ||
کلیدواژهها | ||
کامپوزیت حلقوی پودی الیاف کولار؛ شبیهسازی اجزای محدود؛ مدل تخریب پیشرونده؛ ضربه سرعتبالا | ||
مراجع | ||
[1]Horrocks A. R., Anand S. C., Handbook of Technical Textiles, Cambridge England: Woodhead Publishing Limited, pp. 5.95-5.128, 2000. [2]Leong K. H., Ramakrishna S., Huang Z. M., Bibo G. A., the Potential of Knitting for Engineering Composites-A Review, Composites: Part a Journal, Vol. 31, pp. 197-220, 2000. [3]Ramakrishna S., Characterization And Modeling of The Tensile Properties of Plain Weft-Knit Fabric-Reinforced Composites, Composites Science and Technology, Vol. 57, pp. 1-22, 1997. [4]Tan P., Tong, L., Steven G. P., Modelling for Predicting The Mechanical Properties of Textile Composites -A Review, Composites: Part A Journal, Vol. 28, pp. 903-922, 1997. [5]Hong H., Araujo M. D. D., Fangueiro R., Ciobanu O., Theoretical Analysis of Load-Extension Properties of Plain Weft Knits Made from High Performance Yarns for Composite Reinforcement, Textile Research Journal, Vol. 72, pp. 991-996, 2002. [6]Abghary M. J., Hasani H., Jafari R., Prediction of Deformation Behavior of Interlock Knitted Fabrics in Different Directions Using FEM Method, The Journal of The Textile Institute, Vol. 109, pp. 1-7, 2018. [7]Li Y., Yang L., Chen S., Xu L., Three Dimensional Simulation of Weft Knitted Fabric Based on Surface Model, Mathematical and Computer Modelling, Vol. 18, pp. 52-57, 2014. [8]Kim K. Y., Curiskis J. I., Ye L., Fu,S. Y., Mode-I Interlaminar Fracture Behaviour of Weft-Knitted Fabric Reinforced Composites, Composites: Part A Journal, Vol. 36, pp. 954-964, 2005.
[9]Ramakrishna S., Hamada H., Impact Damage Resistance of Knitted Glass Fiber Fabric Reinforced Polypropylene Composites, Reinforced Polypropylene Composites, Vol. 4, pp. 61-72, 1995.
[10]Pandita S., Falconet D. D., Verpoest I., Impact Properties of Weft Knitted Fabric Reinforced Composites, Composites Science and Technology, Vol. 62, pp. 1113-1123, 2002. [11] Shokrieh M. M., Ghajar M., Salamattalab M., Madoliat R., Progressive Damage Modeling Of Laminated Composites by Considering Simultaneous Effects of Interlaminar and Intralaminar Damage Mechanisms, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 1-8, 2015. [12] Taheri-Behrooz F., Bakhshan H., Tensile Characteristic Length Determination of Nothced Woven Composite Laminates by Means of Progressive Damage Analysis, In Persian, Modares Mechanical Of Engineering, Vol. 15, No. 8, pp. 360-370, 2015. [13] Kariman Moghadam A., Rahnama A. S., Maleki S., Experimental and Numerical Investigation of Crack Growth in Adhesive Bonding of Two Composite Plates Under Mode I, In Persian, Modares Mechanical Engineering, Vol. 16, No. 5, pp. 271-280, 2016. [14]Shokrieh,M. M., Zeinedini A., Prediction of Strain Energy Release Rate of Asymmetric Double Cantilever Composite Beam in Mixed-Mode I/II Delamination Using Equivalent Lay-Up, In Persian, Modares Mechanical Engineering, Vol. 13, No. 13, pp. 214-225, 2014. [15]Choupani N., Shameli M., Experimental and Numerical Investigation of in-Plane Interlaminar Fracture of Woven Glass-Epoxy Composite Under Mixed-Mode Loading Conditions, In Persian, Aerospace Mechanics Journal, Vol. 1, No. 51, pp. 39-54, 2017. [16]Hasanalizadeh F., Dabiryan H., Sadighi M., A Semi-Empirical Model to Predict The Low-Velocity Impact Behavior of Weft-Knitted Spacer Fabrics Reinforced Composites, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 117-126, 2018. [17]Azadian M., Hasani H., Shokrieh M. M., The Novel Three Dimensional Weft Knitted Sandwich Composites Under Drop-Weight Impacts in Different Energy Levels, In Persian, Journal of Science and Technology of Composites, Vol. 05, No. 02, pp. 271-278, 2018. [18]Chaparian Y., Kabiri A., Khaje Arzani H., Gerami G., Experimental and Numerical Investigation of High Velocity Impact Resistance in Fiber Metal Laminates, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 99-108, 2018.
[19] Oliaee M., Falahatgar S. R., Numerical Analysis of Ballistic Behavior of Multi-layer High-strength Woven Fabrics Under High-velocity Impact and Investigation of Inter-yarn Friction Effects, Tabriz Mechanical Engineering,Vol. 49. No. 1, pp. 199-288, 2019. [20]Soroush M., Malekzade Fard K., Shahravi M., Finite Element Simulation of Interlaminar and Intralaminar Damage in Laminated Composite Plates Subjected to Impact, Latin American Journal of Solids and Structures, Vol. 15, No. 6, 2018. [21]Dssault System’s Simulia Corp, ABAQUS 2017 User's Manual. Providence, RI, USA, 2017. [22]Hashin Z., A. Rotem, A Fatigue Failure Criterion for Fiber Reinforced Materials, Journal of Composite Materials, Vol. 7, pp. 448-464, 1973. [23]Pinho S.T., Robinson P., Iannucci L., Fracture Toughness of The Tensile and Compressive Fibre Failure Modes in Laminated Composites, Composite Science Technolgy journal, Vol. 66, No. 13, pp. 2069-2079, 2006. [24] Standard test method for in-plane shear response of polymer matrix composite materials by test of a laminate, ASTM D 3518/3518M-94. West Conshohocken (PA), USA: American Society for Testing and Materials, 2002. [25] Standard test method for tensile properties of polymer matrix composite materials, ASTM D 3039/D 3039M-00, West Conshohocken (PA), USA: American Society for Testing and Materials, 2002 [26]Standard Test Method for Linear-Elastic Plane Strain Fracture Toughness KIC of Metallic Materials, ASTM, Annual Book of ASTM Standard, Vol. 03, No. Reapproved 2007, E399-05, 2014. [27]Laffan M. J., Pinho S. T., Robinson P., Iannucci L., Measurement of The in Situ Ply Fracture Toughness Associated with Mode I Fibre Tensile Failure In FRP. Part I: Data reduction, Composites Science and Technology, Vol. 70, pp. 606–613, 2010. [28]Rodriguez J., Chocron I. S., Martinez M. A., Sanchez-Galvez V., High Strain Rate Properties of Aramid and Polyethylene Woven Fabric Composites, Composites: Part B, Vol. 95, pp147-154, 1996. [29]Sun C. T., Han C., a Method for Testing Interlaminar Dynamic Fracture Toughness of Polymeric Composites, Composites: Part B, Vol. 35, pp. 647-655, 2000. | ||
آمار تعداد مشاهده مقاله: 446 تعداد دریافت فایل اصل مقاله: 417 |