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Abstract 

Drought is the main abiotic stress seriously influencing wheat production and quality in the world. Information about the 

inheritance of drought tolerance is necessary to determine the type of breeding program and to develop tolerant cultivars. 

In this study, Bayesian inference was used to explore the nature and amount of gene effects controlling yield and its 

components under water deficit and normal conditions by assessment of contrasting bread wheat parents (Bam and Arta) 

and derived generations from them. Bayesian inference using the Gibbs Variable Selection (GVS) approach and the 

Deviance Information Criterion (DIC) were applied to identify the most important gene effects and to compare models 

including different gene effects. The GVS and DIC provided an efficient way to perform the analysis and to introduce the 

more appropriate models. It can be inferred from the results that the Bayesian analysis provides a robust inference of 

genetic architecture of yield and yield components in wheat. Since the additive, dominance and epistatic gene actions 

involved in the inheritance of agronomic characters under both water stress and normal conditions, methods which utilize 

all types of gene effects, such as hybrid seed production, may be useful in improving yield and its stability in wheat. 

 

Keywords: Bayesian inference; DIC; GVS; MCMC; Water deficit; Wheat 

 

Citation: Safari P, Moghaddam Vahed M, Alavikia S, Norouzi M and Rabiei B, 2018. Bayesian inference to the genetic 

control of drought tolerance in spring wheat. Journal of Plant Physiology and Breeding 8(2): 25-42. 

 

 

Introduction 

Bread wheat (Triticum aestivum L.) is the most 

important cereal crop in Iran, where drought is the 

main abiotic stress which influences wheat 

production adversely during the grain filling period 

and dramatically reduces grain yield and quality 

(Nezhadahmadi et al. 2013). The requirement for 

the improvement of tolerant cultivars to the water 

deficit stress is clear. The type of breeding program 

depends on genetic information about the desired 

traits. An effective instrument to concentrate on the 

inheritance of traits under study is the utilization of 

phenotypic information from segregating 

populations derived from differentiating parental  

 

lines, empowering breeders to devise the most 

proper breeding methodology (Balestre et al. 

2012). Joint-scaling test has been used to estimate 

genetic parameters from the generation means and 

to test the fitting of genetic models consisting of 

main and epistatic effects (Mather and Jinks 1971). 

This methodology can be considered as a model 

selection issue. Whether a model with both main 

and epistatic effects is superior to a simpler model 

can be evaluated by the model selection. 

Restrictions of degrees of freedom to the number 

of parameters of the model and the biased 

estimations of main and epistatic effects are 

limitations of this method (Balestre et al. 2012). An 
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alternative approach to resolving these limitations 

is to perform Bayesian inference and model 

selection. In the Bayesian approach, the 

information about the parameter (as a prior 

distribution) is combined to the information taken 

from the data to obtain the posterior distribution. 

Posterior distribution covers all of the accessible 

information for inference of the genetic structure of 

the desired traits and represents the uncertainty 

about the parameter after the data was considered 

(Mathew et al. 2012). Utilization of Markov chain 

Monte Carlo (MCMC) technique is the suitable 

computational method to take samples from the 

posterior distributions. Common MCMC methods 

used for sampling are the Metropolis–Hastings (M-

H) (Metropolis et al. 1953; Hasting 1970) and the 

Gibbs sampler (Geman and Geman 1984) 

algorithms. The Gibbs sampler is a special case of 

M-H sampling that draws sample from the 

completely conditional posteriors (Lynch 2007). 

The main issue in the model selection is the 

choice of selection criteria. Several distinct 

techniques have been provided and examined for 

the model selection. Generally, adjusted R2 (Neter 

et al. 1996) and Akaike information criterion (AIC) 

(Akaike 1973) are used in conventional statistics. 

In contrast to the conventional approaches, the 

deviance information criterion (DIC) 

(Spiegelhalter et al. 2002) is presented in the 

Bayesian statistics. DIC was proposed by 

Spiegelhalter et al. (2002) as a generalization of the 

AIC. This criterion can be used for the model 

comparison and selection of appropriate models 

(Spiegelhalter et al. 2002). DIC, as a suitable 

criterion, has been applied for assessing 

hierarchical models in the studies related to 

genotype by environment interaction (Fikse et al. 

2003; Rekaya et al. 2003) and multiple quantitative 

trait loci (QTL) mapping (Shriner and Yi 2009). 

Calculation of DIC is based on the samples taken 

from the posterior distribution by the MCMC 

algorithm. DIC calculates the posterior predictive 

error by controlling the deviance related to model 

fitting (Shriner and Yi 2009). Shriner and Yi 

(2009) presented application of DIC in multiple 

QTL mapping and concluded that DIC is a 

proficient approach to model selection.  

The Gibbs sampling based techniques are the 

algorithms that efficiently search the model space 

and provide estimating of posterior variable 

inclusion probabilities. Stochastic search variable 

selection (SSVS) (George and McCulloch 1993) 

and Gibbs variable selection (GVS) (Dellaportas et 

al. 2002) are some of the Gibbs based approaches 

for variable and model selection. When we use 

GVS, the primary goal is to find some effects that 

are more important than the others, allowing 

breeders to focus on the most significant effects. 

The great ability of the GVS to identify the 

important effects in the model is due to the use of 

binary vector and efficient MCMC algorithm 

(Ntzoufras 2011). MCMC techniques, encouraged 

by the development of the Gibbs sampling 

algorithm, has been used for the Bayesian inference 

in quantitative genetics (Wang et al. 1993; Jensen 

et al. 1994; Sorensen et al. 1995). Waldmann et al. 

(2008) introduced a fast hybrid Gibbs sampler to 

estimate additive and dominance variances in the 

mixed model for Scots pine. Another MCMC 

sampling algorithm in the mixed model was 

proposed by Mathew et al. (2012) to estimate 

genetic parameters for the data from spring barley 
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lines. Xu (2003) proposed a Bayesian approach to 

estimate genetic effects related to markers in a 

barley double haploid population and demonstrated 

that the Bayesian strategy can be considered as an 

alternative or even better QTL mapping method. 

Balestre et al. (2012) used the proposed Bayesian 

method of Xu (2003) to study the genetic control 

of resistance to gray leaf spot in maize. They 

showed that genetic control of this trait was mostly 

additive and concluded that Bayesian shrinkage 

analysis is a brilliant way to deal with the complex 

models. Yi et al. (2005) used Bayesian model 

selection approach to identify epistatic QTLs for 

obesity trait in the experimental crosses from two 

inbred lines of mice. They proposed an effective 

MCMC algorithm using the Gibbs and Metropolis-

Hasting samplers to obtain the posterior 

distribution and showed that Bayesian model 

selection approach is a comprehensive way to QTL 

mapping. Yi et al. (2007) generalized the Bayesian 

model selection method for epistatic QTL mapping 

to models consisting environmental effects and 

gene by environment interaction and proposed a 

new MCMC algorithm to study the posterior 

distribution of unknown parameters. 

In this study, Bayesian inference using the GVS 

approach and DIC was applied to explore the 

nature and amount of gene effects and to identify 

the most important gene effects related to 

justification of models for yield and yield 

components of bread wheat under water deficit and 

normal conditions. 

 

Materials and Methods 

Plant materials and experiments 

The plant materials consisted of the generations 

derived from a cross between two Iranian spring 

wheat cultivars, Bam (P1, as a drought tolerant 

parent) and Arta (P2, as a drought sensitive parent). 

Two field experiments were carried out across two 

years (2013 and 2014) at the research station of 

Faculty of Agriculture, University of Tabriz, Iran 

(38˚0ʹ N, 46˚4ʹ E, 1361 asl). Seven generations 

during 2013 (P1, P2, F2, F3, F4, BC1S1, BC2S1) and 

10 generations during 2014 (P1, P2, F2, F3, F4, F5, 

BC1S1, BC2S1, BC1S2, BC2S2) were evaluated. Split 

plot designs based on randomized complete blocks 

with two and three replications in 2013 and 2014 

growing seasons, respectively, were carried out in 

which main plots assigned to irrigation treatments 

(well watered and cessation of irrigation at the 

pollination stage) and sub-plots given to the 

generations. Experimental units had a different 

number of plants, depending on the genetic 

uniformity of each generation. For the non-

segregating generations (P1 and P2) the 

experimental units contained of 30 plants, while for 

the segregating generations 90 and 60 were used 

during 2013 and 2014 growing seasons, 

respectively. The number of families used for 

different generations are presented in Table 1. The 

length of each row was 90 cm and the seeds were 

planted 5 cm apart with 15 cm row to row spacing. 

At the beginning and end of the planting rows, 

marginal rows were considered. All field 

preparations and agronomical operations from 

sowing until harvest were carried out in accordance 

with conventional practices. During harvest, 

marginal effects were considered and 2/3 of the 

plants in the sub-plots were randomly chosen to 
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measure grain yield (g/plant) and its components. 

Before performing analysis of variance, normality 

were performed by the SAS software (SAS 2002). 

test of residuals was conducted. Before conducting 

the combined analysis, Bartlett test was used to 

assess the homogeneity of experimental errors.  

Analysis of variance was first performed as 

combined across years and then, based on the 

significance of the genotype by year interaction, 

individually for each year. The statistical analyses  

Bayesian modeling 

It is assumed that the generation means follow the 

linear model bellow: 
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where 
iY is the observed phenotypic value of 

generation  i, 
0  is  the  grand  mean, 

1ix  to 
5ix  

are the coefficients related to additive ([a]), 

dominance ([d]), additive × additive ([aa]), additive 

× dominance ([ad]) and dominance × dominance 

([dd]) effects, respectively, β= (β1, β2,…β5)t are 

the coefficients of the model and are the 

expectation of the effects ([a], [d], [aa], [ad], [dd]), 

and 
ie is the residual error assuming  20,N  . 

In the Bayesian approach, the distribution of 

dependent variable vector Y is specified 

conditional on the parameters β and
2 : 

 2 2

n| , ,N Y β Xβ I  

where,  1,...,
t

pX XX and In is an identity 

matrix. 

In the Bayesian inference the supposition with 

regards to the model characterize a likelihood 

function and prior distributions are allotted to the 

unknown model parameters. There is prior 

uncertainty about each genetic effects ought to be 

incorporated into the model. It is assumed that all 

parameters have an independent prior structure 

(Ntzoufras 2011): 
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Table 1. Number of families for different generations obtained from the cross between Bam and Arta wheat 

cultivars.  

Generation 
Year 

2013 2014 

F3 45 126 

F4 37 53 

F5 - 52 

BC1S1 17 13 

BC2S1 19 12 

BC1S2 - 20 

BC2S2 - 20 
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In this study, normal distribution with mean 

zero ( 0
j

  ) and unique variance was assigned 

to each gene effect as a prior distribution. The 

distribution devoted to each effect was further 

assigned a vague prior (
2 410jc  ) so that the 

variance can be estimated from the data. In order to 

be compatible with WinBUGS notation, 
2 was 

substituted by the corresponding precision 

parameter  (Ntzoufras 2002). The prior mean and 

variance related to the gamma prior distribution of 

the precision parameter were determined by the 

following formula: 

 
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b
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Similarly, for   the low prior parameter values (a= 

b = 0.001) were used making its prior mean equal 

to one and its prior variance large.  

The purpose of Bayesian analysis is to infer 

the posterior distribution and the conditional 

distribution of the parameters, considering the 

observed data. In this study, the sampling was 

performed by the Gibbs sampler algorithm (Geman 

and Geman 1984). Gibbs sampling includes an 

iterative process to draw samples from the 

posterior distribution for each parameter and 

repeats this updating process (Lynch 2007). The 

length of the Markov chain contained 8000 

iterations. The sampled parameter values from the 

first 1000 iterations of the chain (burn-in period) 

were discarded from the analysis. From that point 

on, the observations were saved for every 50 

iterations to diminish serial correlation. In order to 

follow the sampled parameters from the posterior 

distribution, it is imperative that the chain is 

converged with the stationary distribution 

(Ntzoufras 2011). In this study the trace plots were 

used to assess the convergence of the algorithm.  

 

Calculation of DIC  

DIC was introduced by Spiegelhalter et al. (2002) 

as a measure of model comparison and adequacy 

(Ntzoufras 2011): 

 

       2 , , , 2m m m mDIC m D m D m D m p       

where,    , 2log | ,m mD m f y m    is the 

posterior mean and pm is the number of effective 

parameters for the model m:

   , ,m m mp D m D m   ; 
m is the posterior 

mean of the parameters involved in the model m.  

 

GVS  

In order to setup GVS, we used structural 

properties of the model described by Ntzoufras 

(2011). Vector of binary indicators  in the issues 

relating to Bayesian variable and model selection is 

applied to determine the most effective 

combination of the variables in the model 

(Ntzoufras 2011). Therefore, the linear model can 

be considered as: 
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Considering the partitioning of   into  (included 

variables) and \  (excluded variables), then the 

prior distribution of  |f   was also divided into 

 |f    (model parameter prior) and 

 \ | ,f      (pseudo-prior). Therefore, the 

posterior distribution for the model parameters by 

assuming independence of   and \  were 

calculated as follows: 
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The hyper-parameters j and jS are 

parameters of the pseudo-prior distribution. Here, 

the proposed parameters were estimated by a pilot 

MCMC run of the full model. The posterior 

distribution for j  is Bernoulli distribution with 

success probability of (
1

j
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where \ j means all terms of   except j . From 

the MCMC output, we estimated the posterior 

inclusion probabilities of each variable as follows: 
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where, T and B are the total and burn-in iterations 

of the algorithm. 

We implemented the WinBUGS software 

(Speigelhalter et al. 2003) to perform GVS and 

calculate DIC of the models. WinBUGS is a freely 

distributed package that provides several methods 

for summarizing and interpreting the posterior 

samples numerically and graphically and 

monitoring the convergence of the Markov chain.  

Results 

Results of the combined analysis with considering 

the constant and random effects for generations and 

years, respectively, were presented in Table 2. The 

effects of year, water regime (except for grain 

number) and generation were significant 

suggesting the existence of differences within these 

factors in terms of grain yield and its components. 

The year × generation interaction was significant 

for all of the traits under study suggesting that 

generations had no stable reaction to the climatic 

conditions of different years. The three order 

interaction of year × water regime × generation was 

also significant for grain yield and spike weight, 

indicating that generations showed no similar 

reaction to the different water regimes and weather 

conditions in terms of these two characters.  
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Further analyses were performed for each year 

separately because there were three more 

generations in the second year (Tables 3 and 4). 

Analysis of variance showed that the effect of 

water regime was significant for the grain yield and 

1000 grain weight in the first year but not in the 

second    year.   However,   significant    genotypic  

 

effects were observed for all traits in both years. 

The interaction of water regime × generation was 

only significant for grain yield in the first year and 

for grain yield, 1000 grain weight and spike weight 

in the second year indicating different reaction of 

generations to non-stress and terminal water stress 

conditions for the above mentioned traits. 

Trace plot for parameter [a] of the grain yield 

model in 2013 under non-stress condition was 

depicted in Figure 1 as an example. Based on the 

trace plots, it can be inferred that all generated 

values were within a parallel zone and there were 

not obvious tendencies or periodicities, so the 

parameters of interest were calculated with the 

increased precision. The posterior summary 

estimates of parameters (mean, standard deviation, 

Monte Carlo error, selected percentiles) were 

provided in Table 5. Monte Carlo error was 

estimated using the batch mean method (Ntzoufras 

2011). Results of the model comparisons and best-

fitted models using the DIC were provided in 

Tables 6 and 7, respectively. The lower the DIC, 

the higher is the evidence that the model is the best 

Table 2. Combined analysis of variance for the studied traits of different generations obtained from the cross between 

Bam and Arta bread wheat cultivars under two water regimes in two growing seasons. 

Sources of variation 
Degrees of 

freedom 

Mean squares 

Grain yield 
1000 grain 

weight 

Grain number Spike length Spike weight 

Year (Y) 1 4.66** 801.79** 1443.25** 55.90** 61.22** 

Replication/Y 3 0.22** 201.87** 2246.85** 0.61** 4.03** 

Water regime (W) 1 2.79** 479.38** 760.98ns 0.59* 4.79** 

Y × W 1 0.01ns 0.08ns 1314.97* 3.78** 0.64ns 

W × Rep/Y 3 0.33** 46.94** 827.74* 0.68** 1.31** 

Generation (G) 9 3.33* 88.08* 3071.23** 4.41** 18.06** 

W × G 9 0.32** 10.95ns 380.71ns 0.03ns 0.51** 

Y × G 6 0.46** 52.79** 1261.86** 1.27** 4.89** 

Y × W × G 6 0.38** 6.84ns 416.87ns 0.14ns 0.63** 

Error 48 0.05 7.17 203.29 0.10 0.17 

CV(%)  10.22 10.48 7.09 3.35 8.42 

ns, *, **: not significant and significant at 0.05 and 0.01 probability levels, respectively. 

Table 3. Analysis of variance for grain yield and its components using different generations obtained from the cross 

between Bam and Arta bread wheat cultivars under two water regimes in 2013. 
 Mean squares 

Sources of variation 
Degrees of 

freedom 

Grain 

yield 
1000 grain weight Grain number Spike length Spike weight 

Replication 1 0.43ns 574.67ns 6431.47ns 1.10ns 3.70ns 

Water regime (W) 1 0.77ns 178.26ns 76.95ns 0.72ns 0.02ns 

Main plot error 1 0.18 22.95 1422.00 0.05 1.09 

Generation (G) 6 0.79** 54.79** 1560.42* 1.38** 4.56** 

W × G 6 0.67** 12.08ns 668.17ns 0.05ns 0.31ns 

Sup-plot error 12 0.11 16.24 350.55 0.18 0.45 

CV(%)  14.08 9.71 15.73 5.13 10.01 
ns, *, **: not significant and significant at 0.05 and 0.01 probability levels, respectively; +since main plot error was not significant 

in the first year, it was pooled with the sub-plot error to test the water treatment and replication. 
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model. Nevertheless, Spiegelhalter et al. (2002) 

recommended that models with DIC difference 

within the minimum value lower than two should 

be considered as similarly well. Thus, the results of 

model comparisons using the DIC were presented 

in Table 7. 

  

Trace plot for parameter [a] of the grain yield 

model in 2013 under non-stress condition was 

depicted in Figure 1 as an example. Based on the 

trace plots, it can be inferred that all generated 

values were within a parallel zone and there were 

not obvious tendencies or periodicities, so the 

parameters of interest were calculated with the 

increased precision. The posterior summary 

estimates of parameters (mean, standard deviation, 

Monte Carlo error, selected percentiles) were 

provided in Table 5. Monte Carlo error was 

estimated using the batch mean method (Ntzoufras 

2011). Results of the model comparisons and best-

fitted models using the DIC were provided in 

Tables 6 and 7, respectively. The lower the DIC, 

the higher is the evidence that the model is the best 

model. Nevertheless, Spiegelhalter et al. (2002) 

recommended that models with DIC difference 

within the minimum value lower than two should 

be considered as similarly well. Thus, the results of 

model comparisons using the DIC were presented 

in Table 7. 
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Figure 1. Trace plot for the [a] effect of the grain yield model estimated from different generations of the cross between Bam and 

Arta bread wheat cultivars at the normal condition in the 2013 growing season. 

 

 

 

 

 

Table 4. Analysis of variance for grain yield and its components using different generations obtained from the cross 

between Bam and Arta bread wheat cultivars under two water regimes in 2014. 
 Mean squares 

Sources of variation 
Degrees of 

freedom 

Grain 

yield 

1000 grain 

weight 
Grain number Spike length Spike weight 

Replication 2 0.07ns 12.37ns 154.53ns 0.31ns 0.13ns 

Water regime (W) 1 2.32ns 343.57ns 3135.35ns 5.76ns 5.71ns 

Main plot error 2 0.33 52.75 530.61 1.00 0.72 

Generation (G) 9 3.42** 97.51** 3225.20** 5.34** 22.79** 

W × G 9 0.06* 8.64* 66.84ns 0.10ns 0.28** 

Sub-plot error 36 0.02 3.52 41.35 0.08 0.07 

CV(%)  6.31 6.72 7.57 2.82 4.74 
ns, *, **: not significant and significant at 0.05 and 0.01 probability levels, respectively; +since main plot error was not significant 

in the second year, it was pooled with the sub-plot error to test the water treatment and replication. 
 



Bayesian inference to the genetic control of drought tolerance in spring Wheat                            33   

 

  

Table 5. Posterior summaries for parameters of the model estimated from different generations of the cross between 

Bam and Arta wheat cultivars at two water regimes in two growing seasons. 

Trait Parameter Mean SD 
Monte Carlo 

error 
2.5% Median 97.5% 

Grain yield 

(2013; 

Normal) 

[m] 2.67 0.24 0.002 2.20 2.67 3.13 

[a] 1.14 0.39 0.005 0.37 1.14 1.92 

[d] -4.76 1.78 0.019 -8.23 -4.78 -1.28 

[aa] -0.03 0.31 0.003 -0.63 -0.03 0.58 

[ad] -1.31 1.74 0.024 -4.77 -1.30 2.07 

[dd] 6.29 3.20 0.033 -0.005 6.28 12.56 

Grain yield 

(2013; Stress) 

[m] 2.00 0.22 0.002 1.58 2.00 2.43 

[a] 0.12 0.35 0.004 0.81 0.12 -0.57 

[d] -1.91 1.60 0.017 -5.03 -1.96 1.23 

[aa] -0.26 0.28 0.003 -0.80 -0.26 0.29 

[ad] 2.56 1.56 0.021 -0.56 2.56 5.62 

[dd] 3.85 2.89 0.030 -1.85 3.85 9.48 

Grain yield 

(2014; 

Normal) 

[m] 2.57 0.05 5.14E-4 2.48 2.57 2.65 

[a] 1.10 0.12 0.001 0.86 1.10 1.34 

[d] 1.25 0.11 0.001 1.04 1.25 1.46 

[aa] 0.28 0.13 0.001 0.04 0.28 0.53 

[ad] 3.33 0.74 0.010 1.87 3.33 4.78 

[dd] -8.08 0.49 0.005 -9.04 -8.08 -7.15 

Grain yield 

(2014; Stress) 

[m] 1.92 0.04 5.02E-4 1.84 1.92 2.01 

[a] 1.08 0.11 0.001 0.84 1.08 1.31 

[d] 1.34 0.10 0.001 1.13 1.34 1.54 

[aa] 0.62 0.12 0.001 0.38 0.62 0.86 

[ad] 3.22 0.73 0.010 1.79 3.22 4.64 

[dd] -3.99 0.47 0.005 -4.93 -3.99 -3.07 

Grain number 

(2013) 

[m] 67.390 6.55 0.085 54.45 67.47 80.21 

[a] 22.94 12.70 0.159 -1.37 23.98 48.74 

[d] 136.10 41.84 0.511 54.93 135.40 217.80 

[aa] 45.91 11.68 0.138 23.19 45.95 68.96 

[ad] -9.15 54.48 0.756 -116.20 -9.19 97.55 

[dd] -160.0 71.65 0.785 -304.00 -160.10 -21.48 

Grain number 

(2014) 

[m] 88.53 1.24 0.014 86.12 88.54 90.95 

[a] 30.29 3.32 0.045 23.66 30.28 36.86 

[d] 4.07 2.97 0.038 -1.83 4.09 9.94 

[aa] -4.23 3.45 0.042 -10.97 -4.21 2.56 

[ad] 59.54 20.13 0.289 19.68 59.67 98.95 

[dd] -178.0 13.47 0.160 -204.50 -177.80 -152.30 

Spike length 

(2013) 

[m] 8.84 0.18 0.002 8.47 8.84 9.20 

[a] 0.55 0.30 0.003 -0.04 0.56 1.15 

[d] -3.30 1.38 0.015 -5.96 -3.31 -0.59 

[aa] 0.23 0.24 0.002 -0.24 0.23 0.71 

[ad] 0.09 1.35 0.018 -2.57 0.09 2.74 

[dd] 4.06 2.48 0.026 -0.85 4.06 8.89 

Spike length 

(2014) 

[m] 9.80 0.05 5.77E-4 9.70 9.80 9.90 

[a] 1.10 0.13 0.001 0.83 1.10 1.38 

[d] 2.29 0.12 0.001 2.05 2.29 2.53 

[aa] -0.68 0.14 0.001 -0.96 -0.68 -0.40 

[ad] 3.22 0.84 0.012 1.55 3.23 4.87 

[dd] -4.15 0.55 0.006 -5.25 -4.15 -3.09 

1000 grain 

weight (2013) 

[m] 35.05 1.37 0.017 32.38 35.06 37.74 

[a] 0.58 2.26 0.029 -3.91 0.58 5.04 

[d] -88.24 10.10 0.115 -107.80 -88.34 -68.25 

[aa] -12.45 1.82 0.021 -16.01 -12.45 -8.83 

[ad] 7.03 10.10 0.140 -12.93 7.031 26.76 

[dd] 130.40 18.22 0.194 94.30 130.40 165.7 
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Posterior densities for parameters of the grain 

yield model at both water regimes in the 2013 

growing season were depicted as examples in 

Figures 2 and 3. The posterior distributions related 

to non-important effects displayed high spike at 

zero, whereas the posterior distributions of the 

most important ones were well placed away from 

zero (Ntzoufras 2011). The posterior distributions 

related to some effects were bimodal. However, the 

corresponding posterior inclusion probabilities 

indicate that these effects should be included or 

excluded from the model (Table 8). Posterior 

variable inclusion probabilities were presented in 

Table 8. Following the Fouskakis et al. (2009), we  

 

eliminated variables with posterior variable 

inclusion probabilities lower than 0.20. 

 

Grain yield 

It can be seen that in the first year (2013) and under 

non-stress water regime, models including additive 

effects compared to the models without this effect 

had smaller DICs (Table 7). Therefore, it seems 

that additive effect improves model fitting and 

provides better fit to the data of grain yield. Of the 

fitted models, the three-parameter model [m] [a] 

[d] with the lowest estimated DIC (5.28) was 

identified as the best model (Table 6). Under the 

stress condition, epistatic effects were also added 

Table 5 Continued 

Trait Parameter Mean SD 
Monte 

Carlo error 
2.5% Median 97.5% 

1000 grain weight 

(2014; Normal) 

[m] 35.24 0.52 0.005 34.24 35.25 36.26 

[a] 4.30 1.40 0.018 1.49 4.31 7.04 

[d] -8.00 1.24 0.016 -10.47 -7.99 -5.55 

[aa] -6.02 1.44 0.017 -8.84 -6.01 -3.17 

[ad] -0.44 8.54 0.124 -17.28 -0.44 16.31 

[dd] 56.06 5.63 0.061 -67.17 -56.04 -45.26 

1000 grain weight 

(2014; Stress) 

[m] 26.65 0.52 0.005 25.65 26.65 27.67 

[a] 5.33 1.40 0.018 2.52 5.34 8.07 

[d] -2.75 1.24 0.016 -5.21 -2.74 -0.30 

[aa] -1.08 1.44 0.017 -3.90 -1.07 1.76 

[ad] 4.44 8.53 0.124 -12.38 4.44 12.19 

[dd] -13.40 5.63 0.061 -24.51 -13.38 -2.60 

Spike weight 

(2013) 

[m] 4.50 0.26 0.003 3.99 4.50 5.02 

[a] 1.18 0.42 0.005 0.33 1.18 2.01 

[d] -6.36 1.93 0.022 -10.09 -6.38 -2.57 

[aa] 0.08 0.34 0.004 0.74 0.08 -0.58 

[ad] 0.54 1.89 0.026 4.28 0.54 -3.14 

[dd] 10.22 3.46 0.037 3.34 10.22 16.98 

Spike weight 

(2014; Normal) 

[m] 6.00 0.10 0.001 5.80 6.00 6.20 

[a] 2.47 0.27 0.003 1.92 2.47 3.01 

[d] 3.15 0.24 0.003 2.67 3.16 3.63 

[aa] -0.91 0.28 0.003 -1.46 -0.91 -0.35 

[ad] 5.42 1.67 0.024 2.12 5.42 8.70 

[dd] -21.85 1.10 0.011 24.02 -21.85 -19.74 

Spike weight 

(2014; Stress) 

[m] 4.94 0.09 0.001 4.76 4.94 5.12 

[a] 2.41 0.24 0.003 1.91 2.41 2.90 

[d] 3.24 0.21 0.002 2.82 3.26 3.69 

[aa] -0.34 0.25 0.003 -0.83 -0.33 0.16 

[ad] 5.27 1.51 0.021 2.28 5.27 8.23 

[dd] -15.12 0.99 0.010 -17.09 -15.12 -13.21 
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to the model, thus the six-parameter model was 

selected as the best model and had the best fit and 

the lowest DIC. The importance of the epistatic 

gene effects for grain yield was previously reported 

by Novoselovic et al. (2004), Khattab et al. (2010) 

and Ijaz and Kashif (2013). In 2014, under both 

conditions, DIC differences in the models 

including dominance × dominance epistasis with 

those without this effect were high and the six-

parameter model was the best model (Tables 6 and 

7). The sign of dominance [d] and dominance × 

dominance [dd] gene effects were opposite, 

suggesting duplicate type of interaction for the 

grain yield. This kind of epistasis generally 

prevents the improvement through selection. Based 

on the GVS results, under non-stress condition in 

2013, the additive effect was the most important 

effect in the model and [d], [ad] and [dd] were also 

included in the model having posterior 

probabilities of 0.59, 0.23 and 0.44, respectively 

(Figure 2 and Table 8). Under water stress 

condition in 2013 and normal condition in 2014, 

[aa] had very low posterior probabilities and was 

eliminated from the model (Table 8). Under water 

stress condition in 2014, all effects had very high 

probabilities and were included in the model (Table 

8).  

 

[a] sample: 7000

   -3.0    -2.0    -1.0     0.0

    0.0

    0.5

    1.0

    1.5

    2.0

 

[d] sample: 7000

  -10.0    -5.0     0.0

    0.0

    0.5

    1.0

    1.5

 

[aa] sample: 7000

   -1.0    -0.5     0.0     0.5

    0.0

   50.0

  100.0

  150.0

 
[ad] sample: 7000

  -10.0    -5.0     0.0     5.0

    0.0

    2.0

    4.0

    6.0

 

[dd] sample: 7000

  -10.0     0.0    10.0

    0.0

    0.5

    1.0

    1.5

 

 

Figure 2. Posterior densities of the model parameters for grain yield estimated from different generations of     

the cross between Bam and Arta bread wheat cultivars at the normal condition in the 2013 growing season. 

 

 

 

 
[a] sample: 7000

   -2.0    -1.5    -1.0    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

 

[d] sample: 7000

  -10.0    -5.0     0.0     5.0

    0.0

    0.1

    0.2

    0.3

    0.4

 

[aa] sample: 7000

   -1.0     0.0     1.0

    0.0

   20.0

   40.0

   60.0

 
[ad] sample: 7000

  -10.0    -5.0     0.0

    0.0

    0.5

    1.0

    1.5

 

[dd] sample: 7000

  -20.0   -10.0     0.0    10.0

    0.0

   0.05

    0.1

   0.15

    0.2

 

 

Figure 3. Posterior densities of model parameters for grain yield estimated from different generations of the cross 

between Bam and Arta bread wheat cultivars at the water stress condition in the 2013 growing season. 
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1000 grain weight 

For 1000 grain weight in 2013, the differences 

among the DIC of the models were relatively low. 

However, the models including [aa] effect had 

lower DIC. Among the fitted models, the four-

parameter model [m] [d] [aa] [dd] had the lowest 

DIC (Table 7). Under normal condition in 2014, the 

model consisting additive and dominance effects 

had lower DIC. The models including [a] was 

better than those without this effect under water 

stress condition (Table 7). Based on the results of 

GVS for 1000 grain weight in 2013, the posterior 

distribution for [d], [aa] and [dd] were very far 

from zero and their posterior inclusion probabilities 

were 100%. The [a] and [ad] effects with posterior 

inclusion probabilities of 0.26 and 0.63 were also 

included in the model (Table 8). In 2014, under 

normal condition, the most important effects in the 

model were [a] and [d] with the posterior inclusion 

probabilities of 100%, that were included in the 

model along with [aa] and [ad] (Table 8). Under 

water stress condition, [a] was the most important 

effect and [d], [ad] and [dd] also remained in the  

 

model with the posterior inclusion probabilities of 

0.29, 0.49 and 0.71, respectively (Table 8).  

 

Grain number 

For grain number in 2013, the models consisting 

additive effect had better fit. The [d] effect did not 

contribute to the best fitted model and finally the 

four-parameter model [m] [a] [aa] [dd] with the 

lowest DIC was identified as the best model (Table 

7). Similarly, the models including [a] were better 

than the others in 2014. Among the models with 

[a], the models consisting [a] and [dd] 

simultaneously showed the lowest DIC and the 

four-parameter model of [m] [a] [d] [dd] was 

selected as the best model (Table 7). The results of 

GVS for grain number in 2013 showed that all 

effects had posterior inclusion probabilities above 

50% and [a], [d] and [aa] were the most important 

parameters (Table 8). In 2014, all effects were 

included in the model and [a], [d] and [dd] were 

identified as the most important effects in the 

model (Table 8). 

 

 

Table 6. The best models fitted for different generations of the cross between Bam and Arta bread wheat cultivars at 

two water regimes in two growing seasons. 
Traits The best model Dbar Dhat pD DIC 

Yield (2013; Normal) [m][a][d] 5.073 4.864 0.210 5.283 

Yield (2013; Stress) [m][a][d][aa][ad][dd] 0.099 -0.207 0.307 0.406 

Yield (2014; Normal) [m][a][d][aa][ad][dd] 13.861 41.747 -27.886 -14.025 

Yield (2014; Stress) [m][a][d][aa][ad][dd] 12.267 43.765 -31.499 -19.232 

Grain number (2013) [m][a][aa][dd] 49.114 48.854 0.260 49.375 

Grain number (2014) [m][a][d][dd] 82.549 82.362 0.187 82.736 

Spike length (2013) [m][a] -2.034 -2.043 0.008 -2.026 

Spike length (2014) [m][a][d][aa][ad][dd] 24.742 38.424 -13.682 11.060 

1000 grain weight (2013) [m][d][aa][dd] 33.569 33.291 0.278 33.846 

1000 grain weight (2014; Normal) [m][a][d][aa][dd] 48.209 49.137 -0.928 47.280 

1000 grain weight (2014; Stress) [m][a][d][aa][dd] 44.666 45.562 -0.896 43.770 

Spike weight (2013) [m][a][d][aa][dd] 6.361 6.110 0.251 6.612 

Spike weight (2014; Normal) [m][a][d][aa][ad][dd] 36.109 39.894 -3.785 32.323 

Spike weight (2014; Stress) [m][a][d][aa][ad][dd] 36.235 39.861 -3.626 32.608 
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Spike length 

For spike length in 2013, the models containing [a] 

effect had the lowest DIC and the simple model [m] 

[a] was identified as the best model (Tables 6 and 

7). In 2014, the models including [dd] and [aa] 

showed better fit and the six-parameter model had 

the lowest DIC and was selected as the best model 

(Table 7). Based on the GVS results in 2013, all 

effects except [aa] remained in the model and [a] 

was the most important effect in the model (Table 

8). In 2014, all effects had posterior inclusion 

probabilities of above 0.99 and were included in 

the model (Table 8). 

 

Spike weight 

In 2013, the models with the [a] effect were better 

than those without this effect and finally the five-

parameter model of [m] [a] [d] [aa] [dd] with the 

lowest DIC was considered as the best model 

(Table 7). In 2014, under both conditions, the six-

parameter model was regarded as the best model 

(Table 7). Based on the GVS results in 2013, [aa] 

was excluded from the model and [a] was 

recognized as the most important effect (Table 8). 

Under normal condition in 2014, all effects with 

posterior inclusion probabilities of above 0.78 were 

included in the model (Table 8). Under stress 

condition, additive effect was the most important 

effect and along with [d], [ad] and [dd] remained in 

the model with posterior inclusion probabilities of 

0.29, 0.49 and 0.71, respectively (Table 8) 

 

Discussion 

The joint- scaling test proposed by Mather and 

Jinks (1971) is ordinarily used for parameter 

estimation in the investigation of the hereditary 

model. However, this approach exhibits several 

disadvantages that may limit its application. 

Specifically, this approach cannot deal with the 

models where the number of the parameters is 

larger than or equal the number of observations 

(Balestre et al. 2012). Moreover, the epistatic 

effects are considered as factors for non-adjustment 

of the additive-dominance model. Since the main 

and epistatic effects are estimated without error in 

the least square model, it is likely that these effects 

are over- or under-estimated (Balestre et al. 2012). 

An alternative way to overcome these limitations is 

to use Bayesian inference and perform shrinkage 

analysis or model selection (Balestre et al. 2012). 

In the shrinkage analysis, instead of removing non-

significant variables, all of the model variables are 

considered but non-significant variable estimates 

shrink toward zero (Xu 2007). Bayesian model 

selection methods are powerful and effective way 

to determine the most important effects in the 

model (Ntzoufras 2011). Among the definitely 

known favorable characteristics of Bayesian 

inference over conventional analysis, the potential 

utilization of prior distributions, adaptability in 

complex models, accurate credibility intervals and 

smaller squared error estimators can be remarkable 

(Balestre et al. 2012). Bayesian inference considers 

prior information so that to inform the current 

model, prior knowledge or results of a previous 

model can be used; it makes this approach 

extremely appealing in terms of inference on 

genetic parameters (Xu, 200). The utilization of 

Bayesian inference to study trait inheritance has 

been valuable in plant breeding (Mathew et al. 

2012; Omer et al. 2014). In the least square 

method, the unknown parameters are fixed and the 
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only source of randomness is distribution of the 

data, whereas Bayesian inference is uncertain 

about the parameters of interest and tackles them as 

random variables, so prior distributions are defined 

for parameters of the model (Mettle et al. 2016). In 

spite of the fact that the least square method is 

adequate for parameter estimation, estimates 

obtained from the Bayesian method have very 

small standard errors, making the Bayesian method 

more robust (Mettle et al. 2016). Also, the use of 

prior distribution is the main advantage of 

Bayesian inference. Furthermore, the Bayesian 

method results in a posterior distribution that 

incorporates prior distribution with the information 

from the data and provides comprehensive 

information about the parameters after analyzing 

the data. The least square method is less flexible in 

that specific assumption about the data (Elster and 

Wubbeler 2016). The objective of the DIC is to 

determine the model that best clarifies the observed 

data as well as minimizes uncertainty about future 

observations (Shriner and Yi 2009). The minimum 

DIC shows the model with the most effective 

combinations of variables. The DIC approach 

provides a comprehensive solution to model 

comparison   using   the  posterior   distribution.  In 

 

 

 

Table 7. Fitted models and their DIC values for grain yield and its components using different generations of the 

cross between Bam and Arta wheat cultivars at two water regimes in two growing seasons. 

Model 

Yield 

(2013; 

Normal) 

Yield 

(2013; 

Stress) 

Yield 

(2014; 

Normal) 

Yield 

(2014; 

Stress) 

1000 grain 

weight 

(2013) 

1000 grain 

weight (2014; 

Normal) 

1000 grain 

weight (2014; 

Stress) 

[m][a] 5.295 9.463 20.462 18.885 37.542 50.116 46.998 

[m][d] 16.057 6.344 22.850 22.374 37.127 56.440 57.419 

[m][aa] 15.983 4.916 23.440 22.432 34.973 57.405 57.442 

[m][ad] 15.878 8.875 23.743 22.619 37.480 57.311 57.194 

[m][dd] 16.084 6.965 -3.986 -11.255 36.927 56.756 54.410 

[m][a][d] 5.283 5.071 19.833 18.962 37.029 49.101 47.074 

[m][a][aa] 5.357 6.499 20.472 19.020 34.874 50.061 47.096 

[m][a][dd] 5.385 7.121 -6.953 -14.667 36.829 49.412 44.065 

[m][a][ad] 5.603 8.744 20.270 18.698 37.516 50.439 47.337 

[m][d][aa] 16.066 1.181 23.078 22.608 34.223 56.541 57.545 

[m][d][dd] 16.108 6.503 -8.951 -14.009 37.102 54.815 54.286 

[m][d][ad] 15.940 5.911 23.164 22.969 36.967 56.297 57.271 

[m][ad][dd] 15.968 6.533 -3.672 -10.933 36.767 56.608 54.261 

[m][aa][dd] 16.086 2.203 -6.119 -12.977 34.069 56.413 54.212 

[m][aa][ad] 15.866 4.483 23.754 22.754 34.813 57.257 57.293 

[m][a][d][aa] 5.366 1.336 20.111 19.196 34.124 49.198 47.200 

[m][a][d][dd] 5.408 6.658 -11.917 -17.421 37.003 47.471 43.941 

[m][a][d][ad] 5.666 5.780 19.692 18.775 37.003 49.424 47.413 

[m][a][ad][dd] 5.693 6.401 -7.145 -14.854 36.803 49.736 44.404 

[m][a][aa][dd] 5.386 2.358 -9.085 -16.389 33.970 49.070 43.867 

[m][a][aa][ad] 5.591 4.352 20.282 18.833 34.848 50.385 47.435 

[m][aa][ad][dd] 15.969 1.770 -5.805 -12.655 33.909 56.266 54.063 

[m][d][ad][dd] 15.991 6.070 -8.636 -13.687 36.942 54.667 54.137 

[m][d][aa][dd] 16.130 0.970 -10.867 -15.633 34.006 54.624 54.115 

[m][d][aa][ad] 15.949 0.748 23.392 22.930 34.063 56.394 57.396 

[m][d][aa][ad][dd] 16.013 0.537 -10.553 -15.311 33.845 54.476 53.966 

[m][a][aa][ad][dd] 5.695 1.639 -9.277 -16.577 33.945 49.393 44.206 

[m][a][d][ad][dd] 5.716 5.939 -12.109 -17.608 36.978 47.795 44.280 

[m][a][d][aa][dd] 5.430 1.125 -13.833 -19.045 33.908 47.280 43.770 

[m][a][d][aa][ad] 5.674 0.617 19.919 19.009 34.098 49.521 47.539 

[m][a][d][aa][ad][dd] 5.739 0.406 -14.025 -19.232 33.882 47.604 44.109 
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Table 7 Continued 

Model 

Spike 

weight 

(2013) 

Spike weight 

(2014; 

Normal) 

Spike 

weight 

(2014; 

Stress) 

Grain 

number 

(2013) 

Grain 

number 

(2014) 

Spike 

length 

(2013) 

Spike 

length 

(2014) 

[m][a] 7.271 38.091 37.355 50.804 84.857 -2.026 25.668 

[m][d] 17.830 40.899 40.946 58.642 90.778 7.753 26.479 

[m][aa] 18.064 41.659 41.052 59.565 91.168 7.808 26.279 

[m][ad] 17.160 41.929 41.273 58.888 91.238 5.907 26.631 

[m][dd] 17.857 38.357 37.190 58.424 89.884 7.750 13.584 

[m][a][d] 6.889 38.119 37.423 49.770 84.913 -1.958 25.726 

[m][a][aa] 7.124 37.360 37.317 50.693 84.523 -1.903 25.526 

[m][a][dd] 6.917 34.817 33.561 49.552 83.629 -1.961 12.832 

[m][a][ad] 7.868 37.956 37.241 51.299 84.949 -1.560 25.477 

[m][d][aa] 17.626 41.026 41.056 58.445 90.823 7.886 26.367 

[m][d][dd] 17.793 36.238 36.545 58.545 88.992 7.847 13.424 

[m][d][ad] 16.777 41.198 41.235 57.854 90.905 5.974 26.689 

[m][ad][dd] 16.805 38.655 37.479 57.635 90.011 5.972 13.795 

[m][aa][dd] 17.673 38.017 36.953 58.247 90.004 7.878 12.134 

[m][aa][ad] 17.012 41.957 41.341 58.777 91.294 6.030 26.489 

[m][a][d][aa] 6.682 37.487 37.427 49.573 84.568 -1.825 25.614 

[m][a][d][dd] 6.852 32.699 32.917 49.673 82.736 -1.863 12.672 

[m][a][d][ad] 7.486 37.225 37.203 50.265 84.615 -1.493 25.535 

[m][a][ad][dd] 7.513 34.682 33.446 50.047 83.721 -1.495 12.641 

[m][a][aa][dd] 6.732 34.478 33.325 49.375 83.749 -1.833 11.381 

[m][a][aa][ad] 7.721 37.984 37.308 51.188 85.005 -1.437 25.335 

[m][aa][ad][dd] 16.620 38.315 37.242 57.458 90.130 6.099 12.344 

[m][d][ad][dd] 16.740 36.537 36.834 57.757 89.118 6.069 13.634 

[m][d][aa][dd] 17.552 35.998 36.351 58.281 89.100 7.985 12.003 

[m][d][aa][ad] 16.574 41.325 41.345 57.656 90.949 6.107 26.577 

[m][d][aa][ad][dd] 16.500 36.296 36.640 57.493 89.226 6.207 12.213 

[m][a][aa][ad][dd] 7.329 34.343 33.210 49.870 83.841 -1.368 11.190 

[m][a][d][ad][dd] 7.449 32.564 32.802 50.168 82.828 -1.398 12.481 

[m][a][d][aa][dd] 6.612 32.458 32.723 49.409 82.844 -1.726 11.250 

[m][a][d][aa][ad] 7.282 37.352 34.313 50.068 84.660 -1.360 25.423 

[m][a][d][aa][ad][dd] 7.209 32.323 32.608 49.904 82.936 -1.260 11.060 

 

 

 

Table 8. Posterior inclusion probabilities for the estimated parameters of grain yield and its components using 

different generations of the cross between Bam and Arta bread wheat cultivars at two water regimes in two growing 

seasons. 
Traits [a] [d] [aa] [ad] [dd] 

Yield (2013; Normal) 0.943 0.598 0.032 0.235 0.440 

Yield (2013; Stress) 1.0 1.0 0.058 0.633 1.0 

Yield (2014; Normal) 1.0 1.0 0.173 1.0 1.0 

Yield (2014; Stress) 1.0 1.0 0.999 0.998 1.0 

Grain number (2013) 0.995 1.0 0.962 0.506 0.552 

Grain number (2014) 1.0 0.981 0.302 0.694 1.0 

Spike length (2013) 0.718 0.664 0.049 0.362 0.448 

Spike length (2014) 1.0 1.0 0.999 1.0 1.0 

1000 grain weight (2013) 0.267 1.0 1.0 0.632 1.0 

1000 grain weight (2014; Normal) 1.0 1.0 0.456 0.411 0.000 

1000 grain weight (2014; Stress) 1.0 0.392 0.123 0.419 0.711 

Spike weight (2013) 0.906 0.718 0.030 0.248 0.637 

Spike weight (2014; Normal) 1.0 1.0 0.787 0.991 1.0 

Spike weight (2014; Stress) 1.0 1.0 0.050 0.991 1.0 
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cases where DIC difference among the models is 

low (less than 2) and the inferences from the 

models is very different from each other, 

reportingof the model with the lowest DIC may be 

misleading (Ntzoufras 2011). In this study, the DIC 

for models including all possible combinations of 

parameters was provided. Accordingly, it can be 

observed by adding or removing any of the effects, 

what changes occurs in the model fitting and 

selection in relation to the most important factors 

for the improvement of model fitting simply on the 

basis of a detailed statistical criterion. The Gibbs 

variable selection algorithm estimates the posterior 

variable inclusion probabilities efficiently. We 

followed the strategy of Fouskakis et al. (2009) and 

reduced the model space by removing variables 

with very low inclusion probabilities and identified 

effects that have the greatest discriminating power. 

Based on  our  results, it  can  be inferred  that  the 

Bayesian analysis provides a robust inference of 

the genetic architecture. Furthermore, we observed 

that additive, dominance and epistatic effects 

control the inheritance of the grain yield and yield 

components under both water stress and non-stress 

conditions. Therefore, methods which exploit these 

effects may be useful for covering all types of gene 

effects. It is advisable to delay selection to later 

generations with increased homozygosity as the 

breeding strategy to obtain tolerant breeding 

populations in wheat for the purpose of obtaining 

pure lines. Also, the production of hybrid varieties 

is recommended if pollination and male sterility 

problems can be solved in the wheat breeding 

programs because it has been shown that hybrid 

varieties in wheat are more productive than pure 

lines and are more stable in the stress prone 

environments (Longin et al. 2012). 
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 استنباط بیزی برای کنترل ژنتیکی تحمل به تنش خشکی در گندم بهاره
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 چکیده

یین نوع حمل به خشکی برای تعت وراثتگذارد. اطلاعات مربوط به د و کیفیت گندم در جهان تأثیر میزیستی اصلی است که به طور جدی بر تولیتنش غیر یشکخ

ژنی کنترل کننده عملکرد و اجزای آن در  هایبرنامه اصلاحی و تکوین ارقام متحمل ضروری است. در این مطالعه، استنباط بیزی برای بررسی ماهیت و میزان اثر

ها مورد استفاده قرار گرفت. استنباط بیزی با استفاده گندم نان )بم و آرتا( و نسل های مشتق شده از آنبا استفاده از ارزیابی ارقام  عادیشرایط کمبود آب و شرایط 

هایی با اثرهای ژنی مختلف مورد رهای ژنی و مقایسه مدلبرای شناسایی مهم ترین اث  (DIC)و معیار اطلاعات انحراف  (GVS)از روش گزینش متغیر گیبز

توان نتیجه گرفت که تجزیه و تحلیل بیزی دند. میکره یروشی کارآمد برای انجام تجزیه و تحلیل و معرفی مدل های مناسب ارا  DICو  GVSت.استفاده قرار گرف

رگیر د صفات زراعی وراثت جا که اثرهای افزایشی، غالبیت و اپیستازی در ه می دهد. از آنیاستنباط قوی از ساختار ژنتیکی عملکرد و اجزای عملکرد در گندم ارا

 تواند در بهبود عملکرد و پایدارییم ، در صورت رفع موانع تولید این ارقام،ارقام هیبرید اصلاح مانند کنندهمه انواع اثرهای ژنی استفاده میهایی که از بودند، روش

 .آن در گندم سودمند باشد

 

 معیار اطلاعات انحراف ؛گندم ؛نش متغیر گیبز،گزی ؛کمبود آب ؛مونت کارلو-های زنجیرروش ؛استنباط بیزی :های کلیدیواژه

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


