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Abstract Solitary wave solutions to the Broer-Kaup equations and approximate long
water wave equations are considered challenging by using the first integral
method.The exact solutions obtained during the present investigation are new.
This method can be applied to nonintegrable equations as well as to integrable
ones.
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1. Introduction

Recently it is seen that the nonlinear phenomena are one of the most impor-
tant subjects for study and they exist in all fields including either the scientific
work or engineering fields, such as fluid mechanics, plasma physics, optical
fibers, biology, solid state physics, chemical kinematics, chemical physics, and
so on. On the other hand, there is a lot of interest to find analytic and nu-
merical solutions of these nonlinear equations by scientists.

In the present paper, we will seek new exact solutions of the following two
nonlinear evolution equations: one is the Broer-Kaup(BK)equations [20, 21]
in the form

ut + uux + vx = 0, (1)

vt + ux + (uv)x + uxxx = 0,

which is used to model the bi-directional propagation of long waves in shallow
water, and another is the approximate long water wave (ALWW) equations
[21, 22, 23] in the form

ut − uux − vx + αuxx = 0, (2)

vt − (uv)x − αvxx = 0,

where α is a real constant. The investigation of the exact solutions of non-
linear partial differential equations plays an important role in the study of
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nonlinear physical phenomena. Nonlinear phenomena appear in a wide vari-
ety of scientific applications such as plasma physics, solid state physics, fluid
dynamics. In order to better understand these nonlinear phenomena, many
mathematicians and physical scientists make efforts to seek more exact so-
lutions of them. Several powerful methods have been proposed to obtain
exact solutions of nonlinear evolution equations, such as tanh-sech function
method [1, 2, 3, 4], extended tanh function method [5, 6, 7, 8], hyperbolic func-
tion method [9], sine-cosine method [10, 11, 12], Jacobi elliptic function ex-
pansion method [13], F-expansion method [14], and the transformed rational
function method [15].
The first integral method was first proposed by Feng [16] in solving Burgers-
KdV equation which is based on the ring theory of commutative algebra.
Recently, this useful method is widely used by many such as in [18, 19] and
by the reference therein. The present paper investigates for applicability and
effectiveness of the first integral method on nonlinear partial differential sys-
tem.

2. Method Applied

For a given nonlinear partial differential equation

F (u, ux, ut, uxx, uxt, ...) = 0, (3)

where u = u(x, t) is the solution of nonlinear partial differential equation (3).
We use the transformations,

u(x, t) = f(ξ), (4)

where ξ = kx+ lt. This enables us to use the following changes:

∂

∂t
(.) = l

∂

∂ξ
(.),

∂

∂x
(.) = k

∂

∂ξ
(.),

∂2

∂x2
(.) = k2

∂2

∂ξ2
(.), .... (5)

using Eq.(5) to transfer the nonlinear partial differential equation (3) to non-
linear ordinary differential equation

G(f(ξ),
∂f(ξ)

∂ξ
,
∂2f(ξ)

∂ξ2
, ...) = 0. (6)

Next,we introduce a new independent variable

X(ξ) = f(ξ), Y =
∂f(ξ)

∂ξ
, (7)

which leads a system of nonlinear ordinary differential equations

∂X(ξ)

∂ξ
= Y (ξ), (8)
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∂Y (ξ)

∂ξ
= F1(X(ξ), Y (ξ)).

By the qualitative theory of ordinary differential equations [17] , if we can find
the integrals to Eq.(8) under the same conditions, then the general solutions
to Eq.(8) can be solved directly. However, in general, it is really difficult for us
to realize this even for one first integral, because for a given plane autonomous
system, there is no systematic theory that can tell us how to find its first inte-
grals, nor is there a logical way for telling us what these first integrals are. We
will apply the Division Theorem to obtain one first integral to Eq.(8) which
reduces Eq.(6) to a first order integrable ordinary differential equation. An
exact solution to Eq.(3) is then obtained by solving this equation. Now, let
us recall the Division Theorem:

Division Theorem. Suppose that P (w, z) and Q(w, z) are polynomials in
C[w, z]; and P (w, z) is irreducible in C[w, z]. If Q(w, z) vanishes at all zero
points of P (w, z) , then there exists a polynomial G(w, z) in C[w, z] such that

Q(w, z) = P (w, z)G(w, z).

3. Applications of the first integral method

In this section, we will construct new exact solutions of Broer-Kaup equa-
tions and approximate long water wave equations by using the method de-
scribed in section 2.
3.1. Broer-Kaup equations
Considering the following transformation

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = kx+ lt,

system (1) can be rewritten as

lu′ + kuu′ + kv′ = 0, (9)

lv′ + ku′ + k(uv)′ + k3u′′′ = 0. (10)

Integrating (9) with respect to ξ, then we have

lu+
k

2
u2 + kv = R1, (11)

where R1 is integration constant. Rewrite this equation as follows

v(ξ) =
R1

k
− l

k
u(ξ)− 1

2
u2(ξ). (12)
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Inserting Eq. (12) into Eq. (10) yields

k3u′′′ − 3k

2
u2u′ − 3luu′ + (R1 + k − l2

k
)u′ = 0. (13)

Integrating Eq. (13) once leads to

k3u′′ − k

2
u3 − 3l

2
u2 + (R1 + k − l2

k
)u = R2. (14)

where R2 is an integration constant. Rewrite this second-order ordinary dif-
ferential equation as follows

u′′(ξ)− 1

2k2
u3(ξ)− 3l

2k3
u2(ξ) + (

R1

k3
+

1

k2
− l2

k4
)u(ξ)− R2

k3
= 0. (15)

Using (7) and (8), we can get

Ẋ(ξ) = Y (ξ), (16)

Ẏ (ξ) =
1

2k2
X3(ξ) +

3l

2k3
X2(ξ) + (

l2

k4
− R1

k3
− 1

k2
)X(ξ) +

R2

k3
. (17)

According to the first integral method, we suppose the X(ξ) and Y (ξ) are
nontrivial solutions of (16)-(17), also

Q(X,Y ) =
m∑
i=0

ai(X)Y i = 0

is an irreducible polynomial in the complex domain C[X,Y ] such that

Q(X(ξ), Y (ξ)) =
m∑
i=0

ai(X(ξ))Y i(ξ) = 0, (18)

where ai(X)(i = 0, 1, ...,m), are polynomials of X and am(X) ̸= 0. Eq. (18)
is called the first integral to (16)-(17). Due to the Division Theorem, there
exists a polynomial g(X) + h(X)Y, in the complex domain C[X,Y ] such that

dQ

dξ
=

dQ

dX

dX

dξ
+

dQ

dY

dY

dξ
= (g(X) + h(X)Y )

m∑
i=0

ai(X)Y i. (19)

In this example, we take two different cases, assuming that m = 1 and m = 2
in (18).
Case A:
Suppose that m = 1, by comparing with the coefficients of Y i(i = 2, 1, 0) on
both sides of (19), we have

ȧ1(X) = h(X)a1(X), (20)

ȧ0(X) = g(X)a1(X) + h(X)a0(X), (21)
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a1(X)[
1

2k2
X3 +

3l

2k3
X2 + (

l2

k4
− R1

k3
− 1

k2
)X +

R2

k3
] = g(X)a0(X).

(22)

Since ai(X) (i = 0, 1) are polynomials, then from (20) we deduce that a1(X)
is constant and h(X) = 0. For simplicity, take a1(X) = 1. Balancing the
degrees of g(X) and a0(X), we conclude that deg(g(X)) = 1 only. Suppose
that g(X) = A1X +B0, then we find a0(X),

a0(X) = A0 +B0X +
1

2
A1X

2, (23)

where A0 is arbitrary integration constant.
Substituting a0(X) and g(X) into (22) and setting all the coefficients of powers
X to be zero, then we obtain a system of nonlinear algebraic equations and
by solving it, we obtain

A1 =
1

k
, B0 =

l

k2
, R1 = −k(A0k + 1), R2 = lkA0, (24)

A1 = −1

k
, B0 = − l

k2
, R1 = k(A0k − 1), R2 = −lkA0, (25)

where k, l and A0 are arbitrary constants.
Using the conditions (24) in (18), we obtain

Y (ξ) = −A0 −
l

k2
X(ξ)− 1

2k
X2(ξ). (26)

Combining (26) with (16), we obtain the exact solution to equation (15) and
then the exact solution to BK system (1) can be written as

u1(x, t) = − l

k
−

√
2k3A0 − l2

k
tan(

√
2k3A0 − l2

2k2
(kx+ lt+ ξ0)), (27)

v1(x, t) = (−A0k − 1 +
l2

2k2
)− 2k3A0 − l2

2k2
tan2(

√
2k3A0 − l2

2k2
(kx+ lt+ ξ0)),

where ξ0 is an arbitrary constant.
Similarly, in the case of (25), from (18), we obtain

Y (ξ) = −A0 +
l

k2
X(ξ) +

1

2k
X2(ξ), (28)

and then the exact solution of BK system (1) can be written as

u2(x, t) = − l

k
−

√
2k3A0 + l2

k
tanh(

√
2k3A0 + l2

2k2
(kx+ lt+ ξ0)), (29)

v2(x, t) = (A0k − 1 +
l2

2k2
)− 2k3A0 + l2

2k2
tanh2(

√
2k3A0 + l2

2k2
(kx+ lt+ ξ0)),

where ξ0 is an arbitrary constant.
Case B:
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Suppose that m = 2, by equating the coefficients of Y i(i = 3, 2, 1, 0) on both
sides of (19), we have

ȧ2(X) = h(X)a2(X), (30)

ȧ1(X) = g(X)a2(X) + h(X)a1(X), (31)

ȧ0(X) = −2a2(X)[
1

2k2
X3 +

3l

2k3
X2 + (

l2

k4
− R1

k3
− 1

k2
)X +

R2

k3
]

+ g(X)a1(X) + h(X)a0(X), (32)

a1(X)[
1

2k2
X3 +

3l

2k3
X2 + (

l2

k4
− R1

k3
− 1

k2
)X +

R2

k3
] = g(X)a0(X).

(33)

Since ai(X) (i = 0, 1, 2) are polynomials, then from (30) we deduce that
a2(X) is constant and h(X) = 0. For simplicity, take a2(X) = 1. Balancing
the degrees of g(X), a1(X) and a2(X), we conclude that deg(g(X)) = 1 only.
Suppose that g(X) = A1X +B0, then we find a1(X) and a0(X) as follows

a1(X) = A0 +B0X +
1

2
A1X

2, (34)

a0(X) = d+
1

4
(− 1

k2
+

A2
1

2
)X4 +

1

3
(− 3l

k3
+

3

2
B0A1)X

3

+
1

2
(B2

0 +A1A0 −
2l2

k4
+

2

k2
+

2R1

k3
)X2 + (B0A0 −

2R2

k3
)X. (35)

Substituting a0(X), a1(X) and g(X) in the last equation in (33) and setting all
the coefficients of powers X to be zero, then we obtain a system of nonlinear
algebraic equations and by solving it with aid Maple, we obtain

d =
A2

0

4
, k =

2

A1
, l =

2B0

A2
1

, R1 = −2(A0 +A1)

A2
1

, R2 =
2B0A0

A3
1

, (36)

d =
A2

0

4
, k = − 2

A1
, l = −2B0

A2
1

, R1 =
2(A0 +A1)

A2
1

, R2 = −2B0A0

A3
1

,

(37)

with A0, B0 and A1 are arbitrary constants.
Using the conditions (36) and (37) into (18), we get

Y (ξ) = −A0

2
− B0

2
X(ξ)− A1

4
X2(ξ). (38)
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Combining (38) with (16), we obtain the exact solution to equation (15) and
then the exact solution to BK system (1) can be written as

u3(x, t) = −B0

A1
∓

√
2A0A1 −B2

0

A1
tan[

√
2A0A1 −B2

0

4
(
2

A1
x+

2B0

A2
1

t+ ξ0)],

(39)

v3(x, t) = (
B2

0

2A2
1

−A0 +A1

A1
)∓2A0A1 −B2

0

2A2
1

tan2[

√
2A0A1 −B2

0

4
(
2

A1
x+

2B0

A2
1

t+ξ0)],

where ξ0 is an arbitrary constant.
3.2. Approximate long water wave equations
Now, we will consider the approximate long water wave equations (2). Making
the transformation u(x, t) = u(ξ), v(x, t) = v(ξ) and ξ = kx + lt, we change
the ALWW system (2) to the following ODEs

lu′ − kuu′ − kv′ + αk2u′′ = 0, (40)

lv′ − k(uv)′ − αk2v′′ = 0. (41)

Integrating (40) with respect to ξ, then we have

lu− k

2
u2 − kv + αk2u′ = R1, (42)

where R1 is integration constant. Rewrite this equation as follows

v(ξ) =
l

k
u− 1

2
u2 + αku′ − R1

k
. (43)

Inserting Eq. (43) into Eq. (41) yields

(
l2

k
+R1)u

′ − 3luu′ +
3k

2
u2u′ − α2k3u′′′ = 0. (44)

Integrating Eq. (44) once leads to

(
l2

k
+R1)u− 3l

2
u2 +

k

2
u3 − α2k3u′′ = R2, (45)

where R2 is an integration constant. Rewrite this second-order ordinary dif-
ferential equation as follows

u′′ − 1

2α2k2
u3 +

3l

2α2k3
u2 − (

l2

α2k4
+

R1

α2k3
)u+

R2

α2k3
= 0. (46)

Using (7) and (8), we can get

Ẋ(ξ) = Y (ξ), (47)

Ẏ (ξ) =
1

2α2k2
X3(ξ)− 3l

2α2k3
X2(ξ) + (

l2

α2k4
+

R1

α2k3
)X(ξ)− R2

α2k3
.(48)
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According to the first integral method, we suppose the X(ξ) and Y (ξ) are
nontrivial solutions of (47)-(48), also

Q(X,Y ) =
m∑
i=0

ai(X)Y i = 0

is an irreducible polynomial in the complex domain C[X,Y ] such that

Q(X(ξ), Y (ξ)) =

m∑
i=0

ai(X(ξ))Y i(ξ) = 0, (49)

where ai(X)(i = 0, 1, ...,m), are polynomials of X and am(X) ̸= 0. Eq. (49)
is called the first integral to (47)-(48). Due to the Division Theorem, there
exists a polynomial g(X) + h(X)Y, in the complex domain C[X,Y ] such that

dQ

dξ
=

dQ

dX

dX

dξ
+

dQ

dY

dY

dξ
= (g(X) + h(X)Y )

m∑
i=0

ai(X)Y i. (50)

In this example, we take two different cases, assuming that m = 1 and m = 2
in (49).
Case A:
Suppose that m = 1, by comparing with the coefficients of Y i(i = 2, 1, 0) on
both sides of (50), we have

ȧ1(X) = h(X)a1(X), (51)

ȧ0(X) = g(X)a1(X) + h(X)a0(X), (52)

a1(X)[
1

2α2k2
X3(ξ)− 3l

2α2k3
X2(ξ) + (

l2

α2k4
+

R1

α2k3
)X(ξ)− R2

α2k3
] = g(X)a0(X).

(53)

Since ai(X) (i = 0, 1) are polynomials, then from (51) we deduce that a1(X)
is constant and h(X) = 0. For simplicity, take a1(X) = 1. Balancing the
degrees of g(X) and a0(X), we conclude that deg(g(X)) = 1 only. Suppose
that g(X) = A1X +B0, then we find a0(X),

a0(X) = A0 +B0X +
1

2
A1X

2, (54)

where A0 is arbitrary integration constant.
Substituting a0(X) and g(X) into (53) and setting all the coefficients of powers
X to be zero, then we obtain a system of nonlinear algebraic equations and
by solving it, we obtain

A1 =
1

kα
, B0 = − l

k2α
, R1 = k2αA0, R2 = lαkA0, (55)
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where k, l and A0 are arbitrary constants.
Using the conditions (55) in (49), we obtain

Y (ξ) = −A0 +
l

αk2
X(ξ)− 1

2αk
X2(ξ). (56)

Combining (56) with (47), we obtain the exact solution to equation (46) and
then the exact solution to ALWW system (2) can be written as

u1(x, t) =
l

k
−

√
2αk3A0 − l2

k
tan(

√
2αk3A0 − l2

2k2α
(kx+ lt+ ξ0)), (57)

v1(x, t) = (
l2

2k2
− 2αk3A0 − l2

2k2
− αkA0)−

2αk3A0 − l2

k2
tan2(

√
2αk3A0 − l2

2αk2
(kx+ lt+ ξ0)),

where ξ0 is an arbitrary constant.
Case B:
Suppose that m = 2, by equating the coefficients of Y i(i = 3, 2, 1, 0) on both
sides of (50), we have

ȧ2(X) = h(X)a2(X), (58)

ȧ1(X) = g(X)a2(X) + h(X)a1(X), (59)

ȧ0(X) = −2a2(X)[
1

2α2k2
X3(ξ)− 3l

2α2k3
X2(ξ) + (

l2

α2k4
+

R1

α2k3
)X(ξ)− R2

α2k3
]

+ g(X)a1(X) + h(X)a0(X), (60)

a1(X)[
1

2α2k2
X3(ξ)− 3l

2α2k3
X2(ξ) + (

l2

α2k4
+

R1

α2k3
)X(ξ)− R2

α2k3
] = g(X)a0(X).

(61)

Since ai(X) (i = 0, 1, 2) are polynomials, then from (58) we deduce that
a2(X) is constant and h(X) = 0. For simplicity, take a2(X) = 1. Balancing
the degrees of g(X), a1(X) and a2(X), we conclude that deg(g(X)) = 1 only.
Suppose that g(X) = A1X +B0, then we find a1(X) and a0(X) as follows

a1(X) = A0 +B0X +
1

2
A1X

2, (62)

a0(X) = d+
1

4
(− 1

α2k2
+

A2
1

2
)X4 +

1

3
(

3l

α2k3
+

3

2
B0A1)X

3

+
1

2
(B2

0 +A1A0 −
2l2

α2k4
− 2R1

α2k3
)X2 + (B0A0 +

2R2

α2k3
)X. (63)

Substituting a0(X), a1(X) and g(X) in the last equation in (61) and setting all
the coefficients of powers X to be zero, then we obtain a system of nonlinear
algebraic equations and by solving it with aid Maple, we obtain

d =
A2

0

4
, k =

2

αA1
, l = − 2B0

αA2
1

, R1 =
2A0

αA2
1

, R2 = −2B0A0

αA3
1

, (64)
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with A0, B0 and A1 are arbitrary constants.
Using the conditions (64) into (49), we get

Y (ξ) = −A0

2
− B0

2
X(ξ)− A1

4
X2(ξ). (65)

Combining (65) with (47), we obtain the exact solution to equation (46) and
then the exact solution to ALWW system (2) can be written as

u2(x, t) = −B0

A1
−

√
2A0A1 −B2

0

A1
tan[

√
2A0A1 −B2

0

4
(

2

αA1
x− 2B0

αA2
1

t+ ξ0)], (66)

v2(x, t) =(
B2

0

2A2
1

− A0

A1
− 2A0A1 −B2

0

2A2
1

)

− 2A0A1 −B2
0

A2
1

tan2[

√
2A0A1 −B2

0

4
(

2

αA1
x− 2B0

αA2
1

t+ ξ0)],

where ξ0 is an arbitrary constant.

4. Conclusion:

In this present work we have presented a number of solitary wave solutions
to the Broer-Kaup equations and approximate long water wave equations. The
first integral method is a very powerful method for finding exact solutions of
the nonlinear differential equations. From our results, we can see that the
technique used in this paper is very effective and can be steadily applied to
nonlinear problems.
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