تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,628 |
تعداد مشاهده مقاله | 51,682,087 |
تعداد دریافت فایل اصل مقاله | 14,566,621 |
Lie symmetry analysis for Kawahara-KdV equations | ||
Computational Methods for Differential Equations | ||
مقاله 5، دوره 1، شماره 2، دی 2013، صفحه 135-145 اصل مقاله (185.8 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Ali Haji Badali* ؛ Mir Sajjad Hashemi؛ Maryam Ghahremani | ||
University of Bonab | ||
چکیده | ||
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method. | ||
کلیدواژهها | ||
Lie symmetries؛ Symmetry analysis؛ Optimal system؛ Infinitesimal Generators؛ Kawahara-KdV equation | ||
مراجع | ||
[1] G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Dierential Equations, Springer Science Business Media, LLC (2010). [2] G. W. Bluman and S. Kumei, Symmetries and Dierential Equations, Springer-Verlag, World Publishing Corp., (1989). [3] B. J. Cantwell, Introduction to Symmetry Analysis, Cambridge University Press, (2002). [4] W. Gang-Wei, L. Xi-Qiang and Z. Ying-Yuan, Lie Symmetry Analysis and Invariant Solutions of the Generalized Fifth-order KdV Equation with Variable Coecients, J. Appl. Math. Informatics Vol. 31 (2013), No. 1-2, pp. 229-239. [5] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Dierential Equations, Wiley, Chichester, (1999). [6] N. H. Ibragimov, Invariant Lagrangians and a New Method of Integration of Nonlinear Equations, J. Math. Anal. Appl. 304 (2005) 212-235. [7] N. H. Ibragimov and S.V. Meleshko, A solution to the Problem of Invariants for Parabolic Equations, Commun Nonlinear Sci Numer Simulat 14. (2009) 2551-2558. [8] N. H. Ibragimov, Symmetries, Lagrangian and Conservation Laws for the Maxwell Equa- tions, Acta. Appl. Math. 105 (2009) 157-187. [9] C. M. Khalique and K. R. Adem, Exact Solution of the (2+1)-Dimensional Zakharov- Kuznetsov Modied Equal Width Equation Using Lie Group Analysis, Computer Modelling. 54 (2011) 184-189. [10] H. Liu, J. Li, L. Liu and Y. Wei, Group Classications, Optimal Systems and Exact Solutions to the Generalized Thomas Equations, J. Math. Anal. Appl. 383 (2011) 400-408. [11] H. Liu and J. Li, Lie Symmetry Analysis and Exact Solutions for the Extended mKdV Equation, Acta Appl Math. 109 (2010) 1107-1119. [12] F. Natali, A Note on the Stability for Kawahara-KdV Type Equations, Lett. 23 (2010)591-596. [13] M. C. Nucci, P. G. L. Leach and K. Andriopoulos, Lie Symmetries, Quantisation and c-Isochronous Nonlinear Oscillators, J. Math. Anal. Appl. 319 (2006) 357-368. [14] M. C. Nucci, Nonclassical Symmetries and Backlund Transformations, J. Math. Anal. Appl. 178 (1993) 294-300. [15] M. C. Nucci, Iterations of the Nonclassical Symmetries Method and Conditional LieBacklund Symmetries, J. Phys. A: Math. Gen. 29 (1996) 8117-8122. [16] P. J. Olver, Application of Lie Groups to Dierential Equations, New York: Springer- Verlag; (1993). [17] V. Torrisi and M. C. Nucci, Application of Lie Group Analysis to a Mathematical Model which Describes HIV Transmission, in: The Geometrical Study of Dierential Equations, in: J. A. Leslie, T. P. Robart (Eds.), Contemp. Math., vol. 285 Amer. Math. Soc., Provi- dence, RI, (2001) 11-20. [18] J. Zhang, Y. Li, Symmetries and First Integrals of Dierential Equations, Acta. Appl. Math. 103 (2008) 147-159. | ||
آمار تعداد مشاهده مقاله: 5,273 تعداد دریافت فایل اصل مقاله: 3,932 |