تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,628 |
تعداد مشاهده مقاله | 51,678,795 |
تعداد دریافت فایل اصل مقاله | 14,564,659 |
بررسی ترمواکونومیک پمپ حرارتی منبع زمینی انبساط مستقیم دیاکسیدکربن با استفاده از منبسطکننده و مبادلهکنحرارتیداخلی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 18، دوره 51، شماره 2 - شماره پیاپی 95، مرداد 1400، صفحه 159-168 اصل مقاله (2.15 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.9699 | ||
نویسندگان | ||
حسین قاضی زاده احسائی* 1؛ اقبال بنی اسد عسکری2؛ مهران عامری مهابادی3 | ||
1استادیار، دپارتمان مهندسی مکانیک، دانشکده شهید چمران، دانشگاه فنی و حرفهای استان کرمان، کرمان، ایران | ||
2استادیار، دپارتمان مهندسی مکانیک، دانشکده فنی، دانشگاه زابل، زابل، سیستان و بلوچستان، ایران | ||
3استاد، دپارتمان مهندسی مکانیک، دانشکده فنی، دانشگاه شهید باهنرکرمان، کرمان، ایران | ||
چکیده | ||
در این مقاله مقایسهای بین چهار پمپ حرارتی منبع زمینی انبساط مستقیم افقی دیاکسیدکربن با بهرهگیری از تحلیل ترمواکونومیک انجام گرفته است. برای چهار سیستم مورد بررسی، هزینه تولید هر واحد حرارت در بار گرمایشی برابر با 8 کیلووات در دو حالت گرمایش محیط و آبگرم مصرفی مورد محاسبه قرار گرفته است. مطابق با نتایج بدست آمده، سیستم دارای شیر انبساط به همراه مبادلهکنحرارتی داخلی و سیستم دارای منبسطکننده به همراه مبادلهکنحرارتی داخلی به ترتیب کمترین هزینه هر واحد حرارت تولید شده و بیشترین ضریب عملکرد را دارا میباشند. علاوه بر این مشخص گردید که به ترتیب در دو حالت گرمایش محیط و آبگرم مصرفی، 19 و 11 درصد افزایش ضریب عملکرد منجر به 11 و 5/7 درصد افزایش هزینه هر واحد حرارت تولید شده در قیمت برق 025/0 دلار بر کیلووات ساعت میگردد. همچنین برای درصدهای افزایشی ضریب عملکرد اشاره شده و با درنظر گرفتن قیمت برق 25/0 دلار بر کیلووات ساعت، در دو حالت گرمایش محیط و آبگرم مصرفی، هزینه هر واحد حرارت تولید شده در حدود 6 درصد افزایش مییابد. | ||
کلیدواژهها | ||
پمپ حرارتی منبع زمینی انبساط مستقیم؛ سیکل دیاکسیدکربن فوق بحرانی؛ منبسطکننده؛ مبادلهکنحرارتیداخلی؛ تحلیل ترمواکونومیک | ||
مراجع | ||
[1] Lorentzen G., Pettersen J., A new efficient and environmentally benign system for car air-conditioning. International Journal of Refrigeration, Vol. 16, No.1, pp. 4-12, 1993. [2] Lorentzen G., Pettersen J., Transcritical Vapor Compression Cycle Device with a Variable High Side Volume Element, in, US Patent 5497631, 1996. [3] You T., Shi W., Wang B., Wu W., Li X., A new ground-coupled heat pump system integrated with a multi-mode air-source heat compensator to eliminate thermal imbalance in cold regions. Energy and Buildings, Vol. 107, pp. 103-112, 2015. [4] Wei K., Li W., Li J., Wang Y., Zhang L., Study on a design method for hybrid ground heat exchangers of ground-coupled heat pump system. International Journal of Refrigeration, Vol. 76, pp. 394-405, 2017. [5] Wei W., Harrison M.S., Lingnan L., Progress in Ground-source Heat Pumps Using Natural Refrigerants, International Journal of Refrigeration, Vol. 92, pp. 70-85, 2018. [6] Jin Zh., Eikevik T.M., Neksa P., Hafner A., Investigation on CO2 hybrid ground-coupled heat Pumping system under warm climate, International Journal of Refrigeration, Vol. 62, pp. 145-152, 2016. [7] Badache M., Ouzzane M., Eslami-Nejad P., Aidoun Z., Experimental study of a carbon dioxide direct-expansion ground source heat pump (CO2- DX-GSHP). Applied Thermal Engineering, Vol. 130, pp. 1480-1488, 2018. [8] Gao Y., Cheng Y., Nan S., Heat Transfer Performance of the Underground CO2 Pipe in the Direct Expansion Ground Source Heat Pump. Energy Procedia, Vol. 105, pp. 4955-4962, 2017. [9] Eslami-Nejad P., Badache M., Ouzzane M., Aidoun Z., Direct expansion ground source heat pump using carbon dioxide as refrigerant: Test facility and theoretical model presentation, in: IGSHPA Technical/Research Conference and Expo Denver, 2017. [10] Eslami-Nejad P., Ouzzane M., Aidoun Z., A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating. Applied Thermal Engineering, Vol. 91, pp. 259-269, 2015. [11] Austin B.T., Sumathy K., Parametric study on the performance of a direct expansion geothermal heat pump using carbon dioxide. Applied Thermal Engineering, Vol. 31, pp. 3774–3782, 2011. [12] Ghazizade-Ahsaee H., Ameri M., Investigation of a direct-expansion ground source heat pump using carbon dioxide. Modares Mechanical Engineering, Vol. 17, No. 6, pp. 433-443, 2017. [13] Dai B., Dang C., Li M., Tian H., Ma Y., Thermodynamic performance assessment of carbon dioxide blends with low-global warming potential (GWP) working fluids for a heat pump water heater. International Journal of Refrigeration, Vol. 56, pp. 1-14, 2015. [14] Yang J.L., Ma Y.T., Li M.X., Guan H.Q., Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander. Energy, Vol. 30, No. 7, pp. 1162-1175, 2005. [15] Li M., Ma Y., Tian H., A rolling piston-type two-phase expander in the transcritical CO2 cycle. HVAC&R Research, Vol. 15, No. 4, pp. 729-741, 2009. [16] Tian H., Ma Y., Li M., Wang W., Study on expansion power recovery in CO2 trans-critical cycle. Energy Conversion and Management, Vol. 51, No. 12, pp. 2516-2522, 2010. [17] Sarkar J., Transcritical CO2 Heat Pump for Simultaneous Cooling and Heating, Phd thesis, Indian Institute of Technology, Kharagpur, 2005. [18] Kim H.J., Ahn J.M., Cho S.O., Cho K.R., Numerical simulation on scroll expander-compressor unit for CO2 trans-critical cycles. Applied Thermal Engineering, Vol. 28, No. 13, pp. 1654-1661, 2008. [19] Sarkar J., Bhattacharyya S., Gopal M.R., Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration, Vol. 27, No. 8, pp. 830-838, 2004. [20] Aprea C., Maiorino A., An experimental evaluation of the transcritical CO2 refrigerator performances using an internal heat exchanger. International Journal of Refrigeration, Vol. 31, No. 6, pp. 1006-1011, 2008. [21] Torrella E., Sánchez D., Llopis R., Cabello R., Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data. International Journal of Refrigeration, Vol. 34, No. 1, pp. 40-49, 2011. [22] Zhang Z., Tian L., Chen Y., Tong L., Effect of an internal heat exchanger on performance of the transcritical carbon dioxide refrigeration cycle with an expander. Entropy, Vol. 16, No. 11, pp. 5919-5934, 2014. [23] Mosaffa A. H., GarousiFarshi L., Comparative Study of Supercritical CO2 Refrigeration Cycles from Energy, Exergy, Economic and Environmental Points of View. Journal of Mechanical Engineering, Vol. 47, No. 1, pp. 285-293, 2017. [24] Ghazizade-Ahsaee H., Ameri M., Performance of carbon dioxide direct-expansion geothermal heat pump using expander and internal heat exchanger. Modares Mechanical Engineering, Vol. 17, No. 11, pp. 300-310, 2018. [25] Da B., Qi H., Liu S., Ma M., Zhong Z., Li H., Song M., Sun Z., Evaluation of transcritical CO2 heat pump system integrated with mechanical subcooling by utilizing energy, exergy and economic methodologies for residential heating. Energy Conversion and Management, Vol. 192, pp. 202-220, 2019. [26] Farsi A., Mohammadi S.M.H., Ameri M., Thermo-economic comparison of three configurations of combine supercritical CO2 refrigeration and multi-effect desalination system. Applied Thermal Engineering, Vol. 112, pp. 855-870, 2017. [27] Domestic Ground Source Heat Pumps: Design and installation of closed-loop systems, in: Domestic_Ground_Source_Heat_Pumps_Design_Installation.pdf, www.icax.co.uk. [28] Global electricty prices by select countries in 2017, in: statistics/263492/electricity-prices-in-selected-countries/ www.statista.com. | ||
آمار تعداد مشاهده مقاله: 441 تعداد دریافت فایل اصل مقاله: 230 |