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Abstract In this paper, an integration method is presented based on using ultraspherical
polynomials for solving a class of linear fractional integro-differential equations of

Volterra types. This method is based on a new investigation of ultrasphreical in-

tegration to approximate the highest order derivative in the equations and generat
approximations to the lower order derivatives through integration of the higher-order

derivatives. Numerical example illustrate the efficiency and accuracy of the method.
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1. Introduction

The use of fractional differential equations for mathematical modeling of real world
physical problems has been widely developed in recent years, e.g. the earth quake
modeling, the fluid dynamic traffic modeling, measurement of viscoelastic material
properties, and etc. Derivatives of non-integer order can be defined in different ways,
e.g, Riemann-Liouville, Grunwald-Letnikow, Caputo and generalized functions ap-
proaches [13]. In this paper we focus on Caputo’s definition which turns out to be
more useful in real life applications, since it allows traditional initial and boundary
conditions to be included in the formulation of the problem. In recent years, more
attempts have been made to find analytical and numerical solutions for the frac-
tional problems. These attempts include introducing finite difference methods [6, 10],
collocation-shooting method [2], Adomian decomposition method [4], operational ma-
trix methods [14] and etc.
The aim of this work is to present a new formulation of spectral integration matrix
depends on using ultraspherical polynomials. By using ultraspherical integration ma-
trix we approximate the highest order derivative in the given equation and generat
approximations to the lower order derivatives through fractional integrations of the
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higher-order fractional derivatives. Then the problem reduces to an algebraic system
which can be solved by using a standard numerical method.
Consider a linear Volterra fractional integro-differential equation in the from:

cDα
0 y(x) = F (x)y(x) +

∫ x

0

K(x, t)y(t)dt, n− 1 < α ≤ n, n ∈ N (1.1)

with the initial conditions:

y(k)(0) = bk k = 0, . . . , n− 1 (1.2)

where F : [0, 1] −→ R, K : [0, 1]× [0, 1] −→ R are given continuous functions and bk
are given constants. The rest of the paper is organized as follows:
Basic concepts of fractional integral and derivatives are discussed in section 2. In
section 3, we introduce ultraspherical polynomials and some of their properties. In
section 4, formulation of the problem is discussed in terms of ultraspherical polyno-
mials . In section 5, illustrative examples are given.

2. Preliminaries

In this section, we recall some basic concepts of fractional calculus which are used
throughout the paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0,
of a function f ∈ Cµ, µ ≥ −1 is defined as [4]

Iαa f(α) =
1

Γ(α)

∫ x

a

f(x)

(x− t)1−α dt,

where n− 1 < α ≤ n, n ∈N and a ∈ R.

Definition 2.2. Let f ∈ Cn−1, n ∈N∪{0}. Then the Caputo fractional derivative of
order α is defined as [4]

cDα
0 f(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−(n−1)
dt

where n− 1 < α ≤ n, n ∈N.

Proposition 2.3. Let f ∈ Cn−1. Then the following properties hold [6, 15]

(1) Iαa x
β =

Γ(β + 1)

Γ(α+ β + 1)
xα+β , α > 0, β > −1, x > 0

(2) Iαa (cDα
0 f(x)) = f(x)−

n−1∑
k=0

fk(0+)
xk

k!
, x > 0

(3) cDα
0 I

αf(x) = f(x), x > 0, n− 1 < α ≤ n.
(4) cDα

0C = 0, C is constant.
(5) If β < [α], then cDα

0 x
β = 0, x > 0.

(6) If β > [α], then cDα
0 x

β =
Γ(β + 1)

Γ(β − α+ 1)
xβ−α, x > 0.
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3. Ultraspherical polynomials and some properties

The ultraspherical (Gegenbauer) polynomials with the real parameter(
λ > −1

2
, λ 6= 0

)
, are a sequence of polynomials {C(λ)

j (x)}∞j=0 defined on [−1, 1],

such that,∫ 1

−1

(1− x2)λ−
1
2C

(λ)
j (x)C

(λ)
k (x)dx =

{
0 j 6= k

ψ
(λ)
j j = k

(3.1)

where

ψ
(λ)
j = 21−2λπ

Γ(j + 2λ)

(j + λ){Γ(λ)}2Γ(j + 1)
, λ 6= 0 (3.2)

is the normalization constant [15]. The shifted ultraspherical polynomials are defined
on [0, 1] by

C̃(λ)
n (x) = C(λ)

n (2x− 1).

All results of ultraspherical polynomials can be easily obtained for their shifted. The

orthogonality relation for C̃
(λ)
n (x) with respect to the weight function (x − x2)λ−1/2

is given by ∫ 1

0

(x− x2)λ−
1
2 C̃

(λ)
j (x)C̃

(λ)
k (x)dx =

{
0 j 6= k

4−λψ
(λ)
j j = k,

where ψ
(λ)
j is given in (3.2)(see [4])

Theorem 3.1. The integral of ultraspherical polynomials is expressed in terms of
ultraspherical polynomials as follows [9]:

I(xi) =

∫ xi

−1

C
(λ)
j (x)dx =

[ 1
2 j]∑
r=0

1

j − 2r + 1
G(j)
r (λ)(xj−2r+1

i − (−1)j−2r+1)

(3.3)

In the remaining parts of this paper, we assume that f(x) is a smooth continuous
function and

S =

{
xi
∣∣ xi =

i

N
; i = 0, . . . , N

}
.

Theorem 3.2. Let
ϕ(x)

(t− x)1−α (t ∈ S, t 6= x) be approximated on S by ultraspherical

polynomials. Then [5],

ϕ(x)

(t− x)1−α '
N∑
j=0

ajC̃
(λ)
j (x), x ∈ [0, 1] (3.4)

where

aj =

N∑
k=0

2θk
N

(
ψ

(λ)
j

)−1
(xk − x2

k)λ−1/2C̃
(λ)
j (xk)

ϕ(xk)

(t− xk)1−α . (3.5)
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with

θ0 = θN =
1

2
, θk = 1, for k = 1, 2, . . . , N − 1.

Theorem 3.3. Let
φ(x)

(t− x)1−α (t ∈ S, t 6= x) be approximated by ultraspherical poly-

nomial. Then there exists a matrix Q = [qij ], i, j = 0 . . . N, satisfying [5]∫ xi

0

φ(x)

(xi − x)1−α dx '
N∑
k=0
i 6=k

q̃ik(λ)
φ(xk)

(xi − xk)1−α , (3.6)

where

q̃ik(λ) =

N∑
j=0

[ 1
2 j]∑
r=0

4λ2θkG̃
j
r(λ)(ψ

(λ)
j )−1

N(j − 2r + 1)
(xk − x2

k)λ−
1
2 C̃

(λ)
j (xk)

(
(2xi − 1)j−2r+1 − (−1)j−2r+1

)
,

(3.7)

for xi, xk ∈ S, with θ0 = θN =
1

2
, θk = 1 for k = 1, 2, . . . , N − 1.

4. Description of the method

In this section we present the ultraspherical spectral integration method for solving
the problems (1.1)− (1.2). For this purpose we give ultraspherical integration matrix
for the highest order fractional derivative in the problem (1.1), i.e. ,

ϕ(x) = cDα
0 y(x), n− 1 < α ≤ n. (4.1)

An application of the integral operator Iα to both sides of (5.1) and using the initial
conditions (1.2) and part 3 of proposition, yield (for a = 0)

y(x) =

n−1∑
k=0

bk
xk

k!
+

1

Γ(α)

∫ x

0

ϕ(t)

(x− t)1−α dt.

Thus for x ∈ S and use of the Theorem 4, we get

y(xi) '
n−1∑
k=0

bk
xki
k!

+
1

Γ(α)

N∑
k=0
i6=k

ϕ(xk)q̃ik(λ)

(xi − xk)1−α . (4.2)

Substituting from (4.1) and (4.2) into (1.1), for 0 ≤ i ≤ N it can be written as:

ϕ(xi) ' F (xi)

n−1∑
k=0

bk
xki
k!

+
1

Γ(α)

N∑
k=0
i 6=k

ϕ(xk)q̃ik(λ)

(xi − xk)1−α

+

N∑
j=0

K(xi, xj)y(xj)q̃ij(λ),

or

ϕ(xi)− F (xi)

n−1∑
k=0

bk
xki
k!

+
1

Γ(α)

N∑
k=0
i 6=k

ϕ(xk)q̃ik(λ)

(xi − xk)1−α

− N∑
j=0

K(xi, xj)y(xj)q̃ij(λ) ' 0,
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For a given value of λ, this is a linear system of equations for the unknown values
ϕ(x0), ϕ(x1), ..., ϕ(xN ) and it can be solved by a standard method.

Theorem 4.1. Let f(x) =
ϕ(x)

(t− x)1−α , (t 6= x, t ∈ S) in (4.9). Then, there exists

ξ ∈ [0, 1] such that [5, 12]∫ xi

0

ϕ(x)

(xi − x)1−α dx =

N∑
k=0
i 6=k

ϕ(xk)q̃ik(λ)

(xi − xk)1−α + E
(λ)
N (xi, ξ), (4.3)

where xi, xk ∈ S, 0 ≤ i ≤ N ,

E
(λ)
N (xi, ξ) =

f (N+1)(ξ)

(N + 1)!K
[λ]
N+1

∫ xi

0

C̃
[λ]
N+1(x)dx− 2

3N2

N∑
j=0

[ψ
(λ)
j ]−1H

(2)
j (ξ)

∫ xi

0

C̃
(λ)
j (x)dx

(4.4)

5. Numerical examples

In this section we give computational results of some examples, to support our
theoretical results.

Example 5.1. Consider the linear fractional integro-differential equation

cD
( 3
4 )

0 y(x) +
x2ex

5
y(x) =

∫ x

0

exty(t)dt+
6x2.25

Γ(3.25)
(5.1)

with the initial condition y(0) = 0 and the exact solution y(x) = x3.

Let φ(x) = cD
3
4
0 y. Using ultraspherical polynomials 1, 2 takes the form,

φi +
x2
i e
xi

5Γ( 3
4 )

 N∑
k=0
i 6=k

φ(xk)

(xi − xk)1/4
q̃ik(λ)

− 6x2.25
i

Γ(3.25)

− 1

Γ(3/4)

N∑
k=0

exixk

 N∑
k=0
i 6=k

φj q̃kj(λ)

(xk − xj)1/4

 q̃ik(λ) ' 0

where q̃ik(λ) is defined by 3.7 for xi ∈ S, i = 0, 1, ..., N .
For a given value of λ, this is a linear system of equations for the unknown values
ϕ(x0), ϕ(x1), ..., ϕ(xN ) and it can be solved by a standard method. The numerical
results reported in Table 1 for N = 10, N = 20, , xi = i

N and λ = 0.75,.

Table 1. Absolute error of Examples 5.1

N x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

10 0 0 3×10−4 1×10−4 2.4×10−3 4.6×10−3 8×10−3 1.27×10−2 1.9×10−2 2.7×10−2

20 0 0 0 1×10−4 3×10−4 6×10−4 1.7×10−3 1×10−3 1.6×10−3 2.4×10−3
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Example 5.2. Consider

cD
( 8
3 )

0 y(x) + exy(x) =

∫ x

0

6ty(t)dt− x6 + x4ex +
24x

4
3

Γ
(

7
3

) (5.2)

with the initial conditions
y(0) = y′(0) = y′′(0) = 0
and the exact solution y(x) = x4. We set

cD
8
3
0 y(x) = φ(x),

and use fractional integration and the initial conditions to get

y(x) =
1

Γ
(

8
3

) ∫ x

0

φ(t)

(x− t)− 5
3

dt

by the Theorem (3.3) and substituting in (5.2) we get the system:

φi −
1

Γ
(

8
3

) N∑
k=0

φkq̃ik
(xi − xk)−5/3

− 1

Γ
(

8
3

) N∑
k=0

q̃ik(λ)exk

(∫ xk

0

φ(s)

(xk − s)−5/3
ds

)
' Bi

φi −
1

Γ
(

8
3

) N∑
k=0

φkq̃ik(λ)

(xi − xk)−5/3
− 1

Γ
(

8
3

) N∑
k=0

q̃ik(λ)exk

 N∑
j=0

φiq̃kj(λ)

(xk − xj)−5/3

−Bi ' 0,

where

Bi = −x6
i + x4

i e
xi +

24x
4
3
i

Γ
(

7
3

) .
and q̃ik(λ) is defined by 3.7 for xi ∈ S, i = 0, 1, ..., N . For a given value of λ, a

linear system is solved for the unknown values ϕ(x0), ϕ(x1), ..., ϕ(xN ). The numerical
results reported in Table 2 for λ = 0.55, and N = 10, N = 20,.

Table 2. Absolute error of Examples 5.2

N x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

10 0 0 1×10−4 1.5×10−4 1.6×10−3 3.9×10−3 8.1×10−3 1.5×10−2 2.56×10−2 2.57×10−2

20 0 0 0 0 1×10−4 2×10−4 5×10−4 9×10−4 1.6×10−3 2.6 ×10−3

Conclusion

A numerical method base on the orthogonal ulteraspherical polynomials designed
for solving fractional order integro-differential equations of Volterra types.
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