تعداد نشریات | 44 |
تعداد شمارهها | 1,298 |
تعداد مقالات | 15,883 |
تعداد مشاهده مقاله | 52,116,572 |
تعداد دریافت فایل اصل مقاله | 14,887,920 |
یک راهکار جدید برای کاهش جریان هجومی با تثبیت شار پسماند در ترانسفورماتورهای قدرت | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 35، دوره 49، شماره 3 - شماره پیاپی 89، آذر 1398، صفحه 1373-1383 اصل مقاله (1021.87 K) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسنده | ||
سید رضا موسوی اقدم* | ||
دانشکده مهندسی - دانشگاه محقق اردبیلی | ||
چکیده | ||
در این مقاله، کاهش جریان هجومی در ترانسفورماتورهای قدرت، مورد تحلیل قرارگرفته و راهکار جدید برای کاهش مؤثر این جریان ارائهشده است. شار پسماند در ترانسفورماتورهای قدرت نقش مهم در مقدار جریان هجومی ایفا میکند. بنابراین، ابتدا روش محاسباتی برای تخمین شار پسماند با استفاده از دادههای حین قطع ترانسفورماتور بیانشده است. در ادامه، روش دیگر با استفاده از مفهوم اندوکتانس پسماند برای تخمین شار در حالتی که دسترسی به این دادهها وجود نداشته باشد، پیشنهادشده است. با توجه به برخی محدودیتها در این روش و نیز در اختیار بودن دادهها و نحوه قطع ترانسفورماتورها در اکثر موارد، یک راهکار جدید برای کاهش جریان هجومی معرفیشده است. در راهکار پیشنهادی، بهجای تخمین شار پسماند، مقدار آن تثبیتشده و در موقع وصل مجدد ترانسفورماتور برای کاهش جریان هجومی مورداستفاده قرار میگیرد. همچنین راهکار ارائهشده در انواع مختلف ترانسفورماتورها و اتصالات آن (ستاره و مثلث) بدون نیاز به نقطه خنثی قابلاعمال است. نتایج شبیهسازیها کاهش مؤثر جریان هجومی با استفاده از روش پیشنهادی را نشان میدهد. | ||
کلیدواژهها | ||
ترانسفورماتورهای قدرت؛ جریان هجومی؛ شار پسماند؛ منحنی هیسترزیس | ||
مراجع | ||
[1] R. Doğan, S. Jazeb and F. de León, “Investigation of transformer-based solutions for the reduction of inrush and phaseh currents,” IEEE Transactions on Power Electronics, vol. 31, no. 5, 2015. [2] S. M. Madani, M. Rostami, G. B. Gharehpetian and L. E. Pope, “Inrush current limiting of transformer primary winding with grounded or nongrounded Y-connection using diode bridges," in Canadian Journal of Electrical and Computer Engineering, vol. 40, no. 3, 2017. [3] S. Fang, H. Ni, H. Lin and S. L. Ho, “Novel strategy for reducing inrush current of three phase transformer considering residual flux,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, 2016. [4] E. Cardelli, A. Faba and F. Tissi, “Prediction and control of transformer inrush currents,” IEEE Transactions on Magnetics, vol. 51, no. 3, 2015. [5] A. Bartel, T. Hülsmann, J. Kühn, R. Pulch and S. Schöps, “Influence of measurement errors on transformer inrush currents using different material models,” IEEE Transactions on Magnetics, vol. 50, no. 2, 2015. [6] S. Jazebi, F. d. León and N. Wu, “Enhanced analyitical method for the calculation of the maximum inrush currents of single-phase power transformer,” IEEE Transactions on Power Delivery, vol. 30, no. 6, 2015. [7] F. d. León, A. Farazmand and P. Joseph, “Comparing the T and π equivalent circuits for the calculation of transformer inrush currents,” IEEE Transactions on Power Delivery, vol. 27, no. 4, 2012. [8] J. V. Leite, A. Benabou and N. Sadowski, “Transformer inrush currents taking into account vector hysteresis,”IEEE Transactions on Magnetics, vol. 46, no. 8, 2010. [9] D. I. Taylor, J. D. Law, B. K. Johnson and N. Fischer,” Single-phase transformer inrush current reduction using prefluxing,” IEEE Transactions on Power Delivery, vol. 27, no. 1, 2012. [10] N. Chiesa, B. A. Mork and H. K. Hoidalen, “Transformer model for inrush current calculations: simulations, measurements and sensitivity analysis,” IEEE Transactions on Power Delivery, vol. 25, no. 4, 2010. [11] N. Chiesa and H. Kristian, “Novel approach for reducing transformer inrush currents: laboratory measurements, analytical interpretation and simulation studies,” IEEE Transactions on Power Delivery, vol. 25, no. 4, Jan. 2010. [12] J. Faiz, B. M. Ebrahimi and T. Noori, “Three- and two-dimensional finite-element computation of inrush current and short-circuit electromagnetic forces on windings of a three-phase core-type power transformer,”IEEE Transactions on Magnetics, vol. 44, no. 5, 2008. [13] L. Sáinz, F. Córcoles, J. Pedra and L. Guasch, “Theoretical calculation of inrush currents in three- and five-legged core transformers,” IEEE Transactions on Power Delivery, vol. 22, no. 2, 2007. [14] J. Ma, Z. Wang, Q. Yang and Y. Liu, “Identifying transformer inrush current based on normalized grille curve,”IEEE Transactions on Power Delivery, vol. 26, no. 2, 2011. [15] A. M. Gaouda and M. M. A. Salama, “DSP wavelet-based tool for monitoring transformer inrush currents and internal faults,” IEEE Transactions on Power Delivery, vol. 25, no. 3, 2010. [16] سجاد باقری، زهرا مروج، گئورگ قرهپتیان، «تمایز میان عیوب مکانیکی سیمپیچ، خطاهای الکتریکی داخلی و خارجی و جریان هجومی در ترانسفورماتورها با استفاده از روش ترکیبی »، مجله مهندسی برق دانشگاه تبریز، در دست انتشار. [17] بهرام نوشاد، مرتضی رزاز و سید قدرتاله سیفالسادات، «تعیین یک مدل دقیق ترانسفورماتور جریان برای آنالیز حالتهای گذرای الکترومغناطیسی در طی خطاهای الکتریکی »، مجله مهندسی برق دانشگاه تبریز، شماره 2، صفحه 77-87، 1390. [18] P. Amiri and M. Akhbari, “Transient current limiter for suppressing transformer inrush, motor starting and fault currents in power system, in IET Electric Power Applications,” vol. 11, no. 3, 2017. [19] S. Bagheri, Z. Moravej and G. B. Gharehpetian, “Effect of transformer winding mechanical defects, internal and external electrical faults and inrush currents on performance of differential protection,” in IET Generation, Transmission & Distribution, vol. 11, no. 10, 2017. [20] A. Sahebi and H. Samet, “Efficient method for discrimination between inrush current and internal faults in power transformers based on the non-saturation zone,” IET Generation, Transmission & Distribution, vol. 11, no. 6, 2017. [21] S. Bagheri, Z. Moravej and G. B. Gharehpetian, “Classification and Discrimination Among Winding Mechanical Defects, Internal and External Electrical Faults, and Inrush Current of Transformer,” in IEEE Transactions on Industrial Informatics, vol. 14, no. 2, 2018. [22] J. A. Jardini, R. P. Casolari, G. Y. Saiki, M. Masuda, L. C. Magrini and R. M. Jacobsen, “Point-on-wave controller developed for circuit breaker switching,” IEEE Transmission and Distribution Conference and Exposition, Chicago, 2008. [23] L. Zhang, W. Chen, J. Liu and C. Wen, “A robust adaptive iterative learning control for trajectory tracking of permanent-magnet spherical actuator,” IEEE Transactions on Industrial Electronics, vol. 63, no. 1, 2016. [24] S. E. Zirka, Y. I. Moroz, N. Chiesa, R. G. Harrison and H. K. Hoidalen, “Implementation of inverse hysteresis model into EMTP-part I: static model,” IEEE Transactions on Power Delivery, vol. 30, no. 5, 2015. [25] S. E. Zirka, Y. I. Moroz, N. Chiesa, R. G. Harrison and H. K. Hoidalen, “Implementation of inverse hysteresis model into EMTP-part II: Dynamic model IEEE Transactions on Power Delivery, vol. 30, no. 5, 2015. [26] C. H. Alonso, S. Jazebi and F. de León, "Experimental parameter determination and laboratory verification of the inverse hysteresis model for single-phase toroidal transformers," Transactions on Magnetics, vol. 52, no. 11, 2016.
| ||
آمار تعداد مشاهده مقاله: 474 تعداد دریافت فایل اصل مقاله: 373 |