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presenting some examples.
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1. Introduction

Fractional integro-differential equations arise in modeling many processes in ap-
plied sciences such as physics, chemistry, economy, electromagnetic, biology, engi-
neering. Mathematical formulas of many phenomena such as oscillation of earth-
quake, fluid-dynamic traffic, statistical mechanics, astronomy, control theory and
other areas of application contain integro-differential equations of fractional order
[5, 6, 7, 8, 15, 16, 19, 31, 32].
On the other hand, solution of most of these equations can not be obtained ana-
lytically, so approximate methods should be used to solve them. For this type of
equations, various methods have been used. For example, the Adomian decomposi-
tion method [14, 27, 28, 33], variational iteration method and homotopy perturba-
tion method [2, 13, 23, 29, 37], Taylor expansion [17], wavelets [26, 34, 38, 39, 41],
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operational Tau method [21, 40], fractional differential transform method [4, 30],
sinc-collocation method [3, 12], Laplace transform method [20, 22] and least squares
method [25]. But, numerical solution of functional fractional integro-differential equa-
tions of Hammerstein type, have been studied in a few references.
In this paper, we consider functional fractional Hammerstein integro-differential equa-
tions (FFHIDEs) as

Dαy(t)−
∫ b

a

K(t, s)F (s, y(s), y(θ(s)))ds = g1(t), t ∈ [a, b] (1.1)

with initial condition

y(a) = y0, (1.2)

where Dα denotes the Caputo fractional operator of order α, 0 < α < 1, a, b ∈ R,
a < b, θ : [a.b]→ [a, b], ∀t ∈ [a, b], θ, g1∈ C1[a, b], and K ∈ C1([a, b]× [a, b]).
Here, we combine the successive approximations method with the trapezoidal quadra-
ture and natural cubic spline interpolation to solve the mentioned equations. Proving
the convergence and numerical stability of the method only requires the Lipschitz
properties.

2. Preliminary Results

2.1. Preliminaries. Assuming that F ∈ C1([a, b]×R×R), K ∈ C1([a, b]× [a, b]), θ
and g ∈ C1[a, b] and θ : [a, b]→ [a, b]. Consider the following conditions:

(i) there exist λ, µ ≥ 0 such that

|F (s, x1, z1)− F (s, x2, z2)| ≤ λ|x1 − x2|+ µ|z1 − z2|, (2.1)

for all s ∈ [a, b], (x1, z1), (x2, z2) ∈ R× R,

(ii)

2Q(b− a)q(λ+ µ) < Γ(α+ 1) (2.2)

where Q = max {|K(t, s)|, |∂K(t,s)
∂t | : (t, s) ∈ [a, b]× [a, b]} and

(b− a)q = max {(b− a)α+1, (b− a)α+2}.

Let F0 : [a, b]→ R, F0(s) = F (s, g(s), g(θ(s))), then F0 is continuous on the compact
set [a, b] because F , g and θ are continuous and so there exists M ≥ 0, such that
| F0(s) |≤M for all s ∈ [a, b].

2.2. Basic definitions of fractional calculus. We recall the following definitions
from [11]:

Definition 2.1. Let α ∈ R+. The operator Jα0 , defined on the space L1[a, b] by

Jαa f(t) :=
1

Γ(α)

∫ t

a

(t− x)α−1f(x)dx, J0
af(t) = f(t). (2.3)

for a ≤ t ≤ b, is called the Riemann-Liouville fractional integral operator of order
α > 0.
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Definition 2.2. The fractional derivative of f in the Caputo sense is defined by

Dα
a f(t) =Jn−αa Dnf(t) =

1

Γ(n− α)

∫ t

a

(t− x)n−α−1 d
nf(x)

dxn
dx, (2.4)

n− 1 < α ≤ n, n ∈ N, a ≤ t ≤ b, x > 0.

3. Existence and uniqueness of the solution

In this section, the existence and uniqueness of the solution of problem (1.1)-(1.2)
are investigated.

Lemma 3.1. Problem (1.1)-(1.2) is equivalent to the integral equation of the Ham-
merstein type

y(t) = g(t) +

∫ t

a

H(t, s)F (s, y(s), y(θ(s)))ds (3.1)

where

g(t) = y(a) +
1

Γ(α)

∫ t

a

(t− τ)α−1g1(τ)dτ,

H(t, s) =
1

Γ(α)

∫ b

a

(t− τ)α−1K(τ, s)dτ.

In other words, every solution of the integral equation (3.1) is a solution of problem
(1.1)-(1.2), and vice versa.

Proof. Using the fractional integral operator on both sides of the equation (1.1) and
by using of (1.2), we have

y(t) = y(a) +
1

Γ(α)

∫ t

a

(t− τ)α−1g1(τ)dτ

+
1

Γ(α)

∫ t

a

(t− τ)α−1

∫ b

a

K(τ, s)F (s, y(s), y(θ(s)))dsdτ. (3.2)

By changing the order of integration in (3.2), equation (3.1) is obtained. �

Remark 3.2. If the functions g1 and K are continuous on their domains, then g and
H are also continuous.

Now we prove the existence and uniqueness of the solution by inspiration of [24].

Theorem 3.3. If g and H are continuous functions on [a, b] and [a, b]× [a, b] respec-
tively, then the equation (3.1) has a unique continuous solution.

Proof. We define the sequence {yn(t)}∞n=1 as follows:

yn(t) = g(t) +

∫ t

a

H(t, s)F (s, yn−1(s), yn−1(θ(s)))ds, n = 1, 2, ..., (3.3)

where y0(t) = g(t). We introduce the sequence ψn(t) as follows:

ψn(t) = yn(t)− yn−1(t), n = 1, 2, ..., (3.4)
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where ψ0(t) = g(t) and so we have

yn(t) =

n∑
i=0

ψi(t). (3.5)

By setting H1 = max
t,s∈[a,b]

|H(t, s)| and due to the θ : [a, b]→ [a, b], we have

| ψn(t) | =| yn(t)− yn−1(t) |≤ H1

∫ t

a

λ | yn−1(s)− yn−2(s) | ds

+H1

∫ t

a

µ | yn−1(θ(s))− yn−2(θ(s)) | ds

≤ H1(λ+ µ)

∫ t

a

max
s∈[a,b]

| yn−1(s)− yn−2(s) | ds

= H1(λ+ µ)

∫ t

a

max
s∈[a,b]

| ψn−1(s) | ds, n = 1, 2, . . . .

Now, by using induction, we prove the following inequality:

|ψn(t)| ≤ G(H1(λ+ µ)(t− a))n

n!
, n = 0, 1, 2, ..., (3.6)

where G = maxt∈[a,b] |g(t)|. Obviously, the inequality holds for n = 0. Suppose that
the inequality holds for n− 1, we have:

|ψn(t)| ≤ H1(λ+ µ)

∫ t

a

| ψn−1(s) | ds

≤ H1(λ+ µ)

∫ t

a

G(H1(λ+ µ)(s− a))n−1

(n− 1)!
ds

=
G(H1(λ+ µ))n

(n− 1)!

∫ t

a

(s− a)n−1ds

=
G(H1(λ+ µ)(t− a))n

n!
, n = 1, 2, . . . .

Therefore, the sequence yn(t) in (3.5) is uniformly convergent and can be written as:

y(t) =

∞∑
i=0

ψi(t). (3.7)

Now, we show that the continuous function y(t) in (3.7) satisfies the equation (3.1).
For this purpose, we put

y(t) = yn(t) + ∆n(t), (3.8)

by using (3.3), we have

y(t)−∆n(t) = g(t) +

∫ t

a

H(t, s).F (s, y(s)−∆n−1(s), y(θ(s))

−∆n−1(θ(s)))ds, (3.9)
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so that

y(t)−g(t)−
∫ t

a

H(t, s).F (s, y(s), y(θ(s)))ds = ∆n(t) +

∫ t

a

H(t, s)

. [F (s, y(s)−∆n−1(s), y(θ(s))−∆n−1(θ(s)))− F (s, y(s), y(θ(s)))]ds.

By applying (2.1), we have

| y(t)− g(t)−
∫ t

a

H(t, s).F (s, y(s), y(θ(s)))ds |

≤| ∆n(t) | +H1

[
λ

∫ t

a

| ∆n−1(s) | ds+ µ

∫ t

a

| ∆n−1(θ(s)) |
]

≤| ∆n(t) | +H1(λ+ µ)

∫ t

a

max
s∈[a,b]

| ∆n−1(s) | ds

≤| ∆n(t) | +H1(t− a)(λ+ µ) ‖ ∆n−1 ‖,

where ‖ ∆n−1 ‖= max
a≤s≤b

| ∆n−1(s) |. On the other hand lim
n→∞

| ∆n−1 |= 0, Therefore,

for sufficiently large values of n, the right-hand side of the inequality can be made as
small as desired, and this concludes that the function y(t) defined in the (3.7) satisfies
the equation (3.1), and therefore is a solution of (3.1).
Now, to show uniqueness, we assume that x(t) is another continuous solution of the
equation (3.1), then

| x(t)− y(t) | ≤ H1

∫ t

a

λ | x(s)− y(s) | ds+H1

∫ t

a

µ | x(θ(s))− y(θ(s)) | ds,

and by putting B = max
t∈[a,b]

|x(t)− y(t)|, we have

| x(t)− y(t) |≤ H1(λ+ µ)

∫ t

a

max
s∈[a,b]

| x(s)− y(s) | ds ≤ H1B(t− a)(λ+ µ).

Repeating the above process, leads to

| x(t)− y(t) |≤ B [H1(t− a)(λ+ µ)]
n

n!
,

which yields x(t) = y(t) when n→∞. �

4. Description of the method

To describe the method, by using integration by parts to Eq. (3.2), we obtain

y(t) = g(t) +
(t− a)α

Γ(α+ 1)

∫ b

a

K(a, s)F (s, y(s), y(θ(s)))ds

+
1

Γ(α+ 1)

∫ t

a

∫ b

a

(t− τ)α
∂K(τ, s)

∂τ
F (s, y(s), y(θ(s)))dsdτ (4.1)

The sequence of successive approximations for (4.1) is defined as

y0(t) = g(t),
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ym(t) = g(t) +
(t− a)α

Γ(α+ 1)

∫ b

a

K(a, s)F (s, ym−1(s), ym−1(θ(s)))ds

+
1

Γ(α+ 1)

∫ t

a

∫ b

a

(t− τ)α
∂K(τ, s)

∂τ
F (s, ym−1(s), ym−1(θ(s)))dsdτ,

m ∈ N, (4.2)

which can be considered as approximations of the exact solution of the equation (3.2).
We need to compute the integrals in (4.2) by quadrature rules. For this purpose,
consider the uniform partition of [a, b]:

a = t0 < t1 < . . . < tn−1 < tn = b (4.3)

with ti = a+ ih, i = 0, . . . , n, where h = b−a
n and assume that f is a given Liepschitz

function, i.e.

| f(s)− f(s′) |≤ L | s− s′ |, (4.4)

where L > 0. Then the trapezoidal quadrature rule with an error estimate is [10]:∫ b

a

f(s)ds =
h

2
·
n∑
j=1

[
f(tj−1) + f(tj)

]
+ en(f), (4.5)

where

|en(f)| ≤ (b− a)2L

4n
, (4.6)

and for bivariate function f with Lipschitz properties

| f(t′, s)− f(t, s) |≤ L1 | t− t′ |, | f(t, s)− f(t, s′) |≤ L2 | s− s′ | (4.7)

where L1, L2 > 0, is∫ b

a

∫ b

a

f(t, s)dtds =
h2

4
·

i∑
k=1

n∑
j=1

[
f(tk, tj−1) + f(tk, tj) + f(tk−1, tj−1)

+ f(tk−1, tj)
]

+ rn(f) (4.8)

where

|rn(f)| ≤ (b− a)2

4n
(L2 + L1(b− a)) . (4.9)

By setting t = ti and using the trapezoidal rule (4.5) and (4.8) in (4.2), we have

y0(ti) = g(ti), i = 0, n (4.10)

y1(ti) = g(ti) +
(ti − a)α

Γ(α+ 1)

(
h

2

n∑
j=1

[
K(a, tj−1)F (tj−1, g(tj−1), g(θ(tj−1)))

+K(a, tj) · F (tj , g(tj), g(θ(tj)))
])

+
1

Γ(α+ 1)

(
h2

4

i∑
k=1

n∑
j=1

[
(ti − tk)α

∂K(tk, tj)

∂τ
F (tj , g(tj), g(θ(tj)))
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+ (ti − tk)α
∂K(tk, tj−1)

∂τ
F (tj−1, g(tj−1), g(θ(tj−1)))

+ (ti − tk−1)α · ∂K(tk−1, tj)

∂τ
F (tj , g(tj), g(θ(tj)))

+ (ti − tk−1)α
∂K(tk−1, tj−1)

∂τ
F (tj−1, g(tj−1), g(θ(tj−1)))

])
+

(ti − a)α

Γ(α+ 1)
e1,i +

1

Γ(α+ 1)
r1,i︸ ︷︷ ︸

R1,i

= y1(ti) +R1,i, i = 0, n (4.11)

y2(ti) =g(ti) +
(ti − a)α

Γ(α+ 1)

(
h

2

n∑
j=1

[
K(a, tj−1)F (tj−1, y1(tj−1)

+R1,j−1, y1(θ(tj−1))) +K(a, tj)F (tj , y1(tj) +R1,j , y1(θ(tj)))
])

+
1

Γ(α+ 1)

(
h2

4

i∑
k=1

n∑
j=1

[
(ti − tk)α · ∂K(tk, tj)

∂τ
F (tj , y1(tj) +R1,j , y1(θ(tj)))

+ (ti − tk)α
∂K(tk, tj−1)

∂τ
· F (tj−1, y1(tj−1) +R1,j−1, y1(θ(tj−1)))

+ (ti − tk−1)α
∂K(tk−1, tj)

∂τ
· F (tj , y1(tj) +R1,j , y1(θ(tj)))

+ (ti − tk−1)α
∂K(tk−1, tj−1)

∂τ
· F (tj−1, y1(tj−1) +R1,j−1, y1(θ(tj−1)))

])
+

(ti − a)α

Γ(α+ 1)
e2,i +

1

Γ(α+ 1)
r2,i︸ ︷︷ ︸

R2,i

(4.12)

Replacing y1 by s1 (where s1 is the natural cubic spline interpolation of y1) which is
introduced below in (4.16), we obtain

y2(ti) = g(ti) +
(ti − a)α

Γ(α+ 1)

(
h

2

n∑
j=1

[
K(a, tj−1)F (tj−1, y1(tj−1), s1(θ(tj−1)))

+K(a, tj) · F (tj , y1(tj), s1(θ(tj)))
])

+
1

Γ(α+ 1)

(
h2

4

i∑
k=1

n∑
j=1

[
(ti − tk)α

∂K(tk, tj)

∂τ
· F (tj , y1(tj), s1(θ(tj)))

+ (ti − tk)α
∂K(tk, tj−1)

∂τ
F (tj−1, y1(tj−1), s1(θ(tj−1)))

+ (ti − tk−1)α
∂K(tk−1, tj)

∂τ
F (tj , y1(tj), s1(θ(tj)))
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+ (ti − tk−1)α
∂K(tk−1, tj−1)

∂τ
· F (tj−1, y1(tj−1), s1(θ(tj−1)))

])
+R2,i

= y2(ti) +R2,i, i = 0, n (4.13)

and for m ≥ 3, we have

ym(ti) = g(ti) +
(ti − a)α

Γ(α+ 1)

(
h

2

n∑
j=1

[
K(a, tj−1)

· F (tj−1, ym−1(tj−1) +Rm−1,j−1, ym−1(θ(tj−1)))

+K(a, tj)F (tj , ym−1(tj) +Rm−1,j , ym−1(θ(tj)))
])

+
1

Γ(α+ 1)

·
(
h2

4

i∑
k=1

n∑
j=1

[
(ti − tk)α

∂K(tk, tj)

∂τ
F (tj , ym−1(tj) +Rm−1,j , ym−1(θ(tj)))

+ (ti − tk)α
∂K(tk, tj−1)

∂τ
F (tj−1, ym−1(tj−1) +Rm−1,j−1, ym−1(θ(tj−1)))

+ (ti − tk−1)α
∂K(tk−1, tj)

∂τ
F (tj , ym−1(tj) +Rm−1,j , ym−1(θ(tj)))

+ (ti − tk−1)α · ∂K(tk−1, tj−1)

∂τ
F (tj−1, ym−1(tj−1)

+Rm−1,j−1, ym−1(θ(tj−1)))
])

+
(ti − a)α

Γ(α+ 1)
em,i +

1

Γ(α+ 1)
rm,i︸ ︷︷ ︸

Rm,i

(4.14)

and replacing ym−1(ti) with sm−1(ti) , for m ≥ 3 and i = 0, n, yields

ym(ti) = g(ti) +
(ti − a)α

Γ(α+ 1)

(
h

2

n∑
j=1

[
K(a, tj)F (tj , ym−1(tj), sm−1(θ(tj)))

+K(a, tj−1) · F (tj−1, ym−1(tj−1), sm−1(θ(tj−1)))
])

+
1

Γ(α+ 1)

(
h2

4

i∑
k=1

n∑
j=1

[
(ti − tk)α

∂K(tk, tj)

∂τ
F (tj , ym−1(tj), sm−1(θ(tj)))

+ (ti − tk)α
∂K(tk, tj−1)

∂τ
F (tj−1, ym−1(tj−1), sm−1(θ(tj−1)))

+ (ti − tk−1)α
∂K(tk−1, tj)

∂τ
F (tj , ym−1(tj), sm−1(θ(tj)))

+ (ti − tk−1)α
∂K(tk−1, tj−1)

∂τ
F (tj−1, ym−1(tj−1), sm−1(θ(tj−1)))

])
+Rm,i = ym(ti) +Rm,i, i = 0, n (4.15)

where sm−1(ti) is cubic spline interpolation for ym−1(ti), where its restriction on in-
terval [ti−1, ti], i = 1, n is as follows [1, 18]:
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s
(i)
m−1(t) =

[
(t− ti−1)2

2
− (t− ti−1)3

6h
− h(t− ti−1)

3

]
·M (i−1)

m−1 +

[
(t− ti−1)3

6h

− h(t− ti−1)

6

]
·M (i)

m−1 +
t− ti−1

h
· ym−1(ti) +

ti − t
h
· ym−1(ti−1), (4.16)

with M
(0)
m−1 = M

(n)
m−1 = 0. And to compute M

(i)
m−1, i = 1, n− 1 we use the following

algorithm:

ai = 2, bi = ci =
1

2
,

di =
3

h2
· [ym−1(ti+1)− 2ym−1(ti) + ym−1(ti−1)], i = 1, n− 1

α1 =
c1
a1
, ωi = ai − αi−1 · bi, αi =

ci
ωi
, i = 2, n− 2,

ωn−1 = an−1 − αn−2 · bn−1 z1 =
d1

2
, zi =

di − bi · zi−1

ωi
, i = 2, n− 1

and by using of the backward recurrence, we have

M
(n−1)
m−1 = zn−1, M

(i)
m−1 = zi − αi ·M (i+1)

m−1 , i = n− 2, 1.

Lemma 4.1. [9] If f : [a, b]→ R is a uniformly continuous function and s ∈ C2[a, b]
is the cubic spline of interpolation generated with natural boundary conditions s′′(a) =
s′′(b) = 0, such that s(ti) = f(ti) = fi, i = 0, n, then the following error estimation
holds:

max
t∈[a,b]

| s(t)− f(t) |≤ 7

4
ω(f, h), (4.17)

where ω(f, h) = sup {| f(t)− f(t′) |: t, t′ ∈ [a, b], | t− t′ |≤ h} is the uniform modulus
of continuity.

5. Error bound and convergence analysis

In this section, we analyze error bound and convergence of the method presented
in the previous section.

Theorem 5.1. Suppose that the y∗ be the exact solution of the equation (3.2), and
consider the sequence of successive approximations (4.2). Then the following error
estimation holds

|y∗(t)− ym(t)| ≤

[
2(b−a)qQ(λ+µ)

Γ(α+1)

]m
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

· 2(b− a)qQM

Γ(α+ 1)
, ∀t ∈ [a, b]. (5.1)

Proof. By using of (4.2), we have

|y1(t)− y0(t)| ≤ |(t− a)α|
Γ(α+ 1)

∫ b

a

|K(a, s)| · |F (s, y0(s), y0(θ(s))|ds
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+
1

Γ(α+ 1)

∫ t

a

∫ b

a

|(t− τ)α| · |∂K(τ, s)

∂τ
| · |F (s, y0(s), y0(θ(s))|dsdτ

≤ 2(b− a)q

Γ(α+ 1)
QM, (5.2)

and

|y2(t)− y1(t)| ≤ |(t− a)α|
Γ(α+ 1)

∫ b

a

|K(a, s)| · |F (s, y1(s), y1(θ(s)))

− F (s, y0(s), y0(θ(s)))|ds+
1

Γ(α+ 1)

∫ t

a

∫ b

a

|(t− τ)α|

· |∂K(τ, s)

∂τ
| · |F (s, y1(s), y1(θ(s)))− F (s, y0(s), y0(θ(s)))|dsdτ

≤ 2(b− a)qQ(λ+ µ)

Γ(α+ 1)
· 2(b− a)q

Γ(α+ 1)
QM,

by repeating the above process, we obtain

|ym(t)− ym−1(t)| ≤
[

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]m−1

· 2(b− a)q

Γ(α+ 1)
QM. (5.3)

Now assume n > m, we have

|yn(t)− ym(t)| ≤ |yn(t)− yn−1(t)|+ |yn−1(t)− yn−2(t)|
+ · · ·+ |ym+1(t)− ym(t)|

and by using of (5.3), we obtain

|yn(t)− ym(t)| ≤
[

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]n−1

· 2(b− a)q

Γ(α+ 1)
QM +

2(b− a)q

Γ(α+ 1)
QM

·
[

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]n−2

+ · · ·+
[

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]m
· 2(b− a)q

Γ(α+ 1)
QM

=

(
1 +

2(b− a)qQ(λ+ µ)

Γ(α+ 1)
+ . . .+

[
2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]n−1−m)
·
[

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]m
· 2(b− a)q

Γ(α+ 1)
QM

=

1−
[

2(b−a)qQ(λ+µ)
Γ(α+1)

]n−m
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

·
[

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]m
· 2(b− a)q

Γ(α+ 1)
QM,

therefore

|yn(t)− ym(t)| ≤
1−

[
2(b−a)qQ(λ+µ)

Γ(α+1)

]n−m
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

·
[

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]m
· 2(b− a)q

Γ(α+ 1)
QM.
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Now if n→∞ and by using (2.2), we obtain

|y∗(t)− ym(t)| ≤

[
2(b−a)qQ(λ+µ)

Γ(α+1)

]m
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

· 2(b− a)q

Γ(α+ 1)
QM,

which is the desired error bound. �

Now, we give the following theorem for convergence analysis:

Theorem 5.2. Under conditions (2.1) and (2.2), the sequence (ym(ti))m∈N0
approx-

imates the solution y∗(ti) at the points ti = a+ ih, i = 0, n with the following error:

| y∗(ti)−ym(ti) |≤
1

4nΓ(α+1)

[
(b− a)α+2L+ (b− a)3L1 + (b− a)2L2

]
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

+

2(b−a)qQµ
Γ(α+1) · ω(V, h)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

+

[
2(b−a)qQ(λ+µ)

Γ(α+1)

]m
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

· 2(b− a)q

Γ(α+ 1)
QM, m ∈ N0, (5.4)

where N0 = N ∪ {0} and Vm−1 is defined in (5.6).

Proof. By using the algorithm of the method, we have

| y∗(ti)− ym(ti) | ≤| y∗(ti)− ym(ti) | + | ym(ti)− ym(ti) |
=| y∗(ti)− ym(ti) | + | Rm,i |, ∀m ∈ N0, i = 0, n, (5.5)

From (5.1), we have

|y∗(t)− ym(t)| ≤

[
2(b−a)qQ(λ+µ)

Γ(α+1)

]m
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

· 2(b− a)q

Γ(α+ 1)
QM.

Therefore, it is enough, we find a bound for | Rm,i |. Since ym(ti) 6= ym(ti), ∀m ∈
N0, i = 0, n, so sm which interpolates the values ym(ti), i = 0, n, does not interpolate
the values of ym(ti). Thus, for every m, the function Vm : [a, b] → R, m ∈ N0 by its
restriction on the subintervals [ti−1, ti], i = 1, n is defined as

Vm(t) =ym(t) +
[
ym(ti)− ym(ti)

]
.
t− ti−1

h

+
[
ym(ti−1)− ym(ti−1)

]
.
ti − t
h

. (5.6)

We see that Vm(ti) = ym(ti), ∀i = 0, n, that is, Vm interpolate the values of

ym(ti), i = 0, n, and this function is continuous. Therefore, sm interpolates the
function Vm for every m ∈ N0 and Vm is uniformly continuous on the compact in-
terval [a, b]. So Vm satisfies in the conditions of Lemma 4.1 and by using (4.17) we
obtain

| Vm(t)− sm(t) |≤ 7ω(Vm, h)

4
, ∀t ∈ [a, b], ∀m ∈ N. (5.7)
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Now, by using the algorithm of the method, we obtain

| R2,i |=| y2(ti)− y2(ti) |≤| R2,i | +
|(ti − a)α|
Γ(α+ 1)

· (b− a)

2n

n∑
j=1

[
| K(a, tj−1) |

. | F (tj−1, y1(tj−1) +R1,j−1, y1(θ(tj−1)))− F (tj−1, y1(tj−1), s1(θ(tj−1))) |

+ | K(a, tj) | . | F (tj , y1(tj) +R1,j , y1(θ(tj)))− F (tj , y1(tj), s1(θ(tj))) |
]

+
1

Γ(α+ 1)
· (b− a)2

4n2

i∑
k=1

n∑
j=1

|(ti − tk)α| · |∂K(tk, tj)

∂τ
|· | F (tj , y1(tj)

+R1,j , y1(θ(tj)))− F (tj , y1(tj), s1(θ(tj))) | +|(ti − tk)α| · |∂K(tk, tj−1)

∂τ
|

· | F (tj−1, y1(tj−1) +R1,j−1, y1(θ(tj−1)))− F (tj−1, y1(tj−1), s1(θ(tj−1))) |

+ |(ti − tk−1)α| · |∂K(tk−1, tj)

∂τ
|· | F (tj , y1(tj) +R1,j , y1(θ(tj)))

− F (tj , y1(tj), s1(θ(tj))) | +|(ti − tk−1)α| · |∂K(tk−1, tj−1)

∂τ
|

· | F (tj−1, y1(tj−1) +R1,j−1, y1(θ(tj−1)))

− F (tj−1, y1(tj−1), s1(θ(tj−1))) | (5.8)

and for m ≥ 3 we obtain

| Rm,i | =| ym(ti)− ym(ti) |≤| Rm,i | +
|(ti − a)α|
Γ(α+ 1)

· (b− a)

2n

n∑
j=1

[
| K(a, tj−1) |

. | F (tj−1, ym−1(tj−1) +Rm−1,j−1, ym−1(θ(tj−1)))

− F (tj−1, ym−1(tj−1), sm−1(θ(tj−1))) | + | K(a, tj) |

. | F (tj , ym−1(tj) +Rm−1,j , ym−1(θ(tj)))− F (tj , ym−1(tj), sm−1(θ(tj))) |
]

+
1

Γ(α+ 1)
· (b− a)2

4n2

i∑
k=1

n∑
j=1

|(ti − tk)α| · |∂K(tk, tj)

∂τ
|

· | F (tj , ym−1(tj) +Rm−1,j , ym−1(θ(tj)))− F (tj , ym−1(tj), sm−1(θ(tj))) |

+ |(ti − tk)α| · |∂K(tk, tj−1)

∂τ
|

· | F (tj−1, ym−1(tj−1) +Rm−1,j−1, ym−1(θ(tj−1)))

− F (tj−1, ym−1(tj−1), sm−1(θ(tj−1))) | +|(ti − tk−1)α| · |∂K(tk−1, tj)

∂τ
|

· | F (tj , ym−1(tj) +Rm−1,j , ym−1(θ(tj)))− F (tj , ym−1(tj), sm−1(θ(tj))) |

+ |(ti − tk−1)α| · |∂K(tk−1, tj−1)

∂τ
|· | F (tj−1, ym−1(tj−1)
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+Rm−1,j−1, ym−1(θ(tj−1)))− F (tj−1, ym−1(tj−1), sm−1(θ(tj−1))) | .

Here we need to obtain an estimate for | ym−1(t) − sm−1(t) |. For this purpose we
have

| ym−1(t)− sm−1(t) |≤| ym−1(t)− Vm−1(t) | + | Vm−1(t)− sm−1(t) |

≤| t− ti−1

h
| . | Rm−1,i | + |

ti − t
h
| . | Rm−1,i−1 | + | Vm−1(t)− sm−1(t) |

≤ max(Rm−1,i−1, Rm−1,i) +
7

4
ω(Vm−1, h), ∀t ∈ [ti−1, ti], ∀i = 0, n.

Now we can find a bound for | Rm,i |. From (5.8) and (5.9) ∀i = 0, n we conclude

| R2,i | ≤| R2,i | +
|(ti − a)α|
Γ(α+ 1)

· (b− a)

2n

n∑
j=1

[
Q(λ | R1,j−1 |

+ µ | y1(θ(tj−1))− s1(θ(tj−1)) |)

+Q (λ | R1,j | +µ | y1(θ(tj))− s1(θ(tj)) |)
]

+
1

Γ(α+ 1)

· (b− a)2

4n2

i∑
k=1

n∑
j=1

[
|(ti − tk)α| ·Q (λ | R1,j | +µ | y1(θ(tj))− s1(θ(tj)) |)

+ |(ti − tk)α| ·Q (λ | R1,j−1 | +µ | y1(θ(tj−1))− s1(θ(tj−1)) |)
+ |(ti − tk−1)α| ·Q (λ | R1,j | +µ | y1(θ(tj))− s1(θ(tj)) |)

+ |(ti − tk−1)α| ·Q (λ | R1,j−1 | +µ | y1(θ(tj−1))− s1(θ(tj−1)) |)
]

(5.9)

therefore

| R2,i | ≤
1

4nΓ(α+ 1)

[
(b− a)α+2L+ (b− a)3L1 + (b− a)2L2

]
+

1

4nΓ(α+ 1)

· 2(b− a)qQ(λ+ µ)

Γ(α+ 1)
·
[
(b− a)α+2L+ (b− a)3L1 + (b− a)2L2

]
+

2(b− a)qQµ

Γ(α+ 1)
· 7

4
ω(V, h). (5.10)

With the induction for m ≥ 3 and for every i = 0, n, also using (2.2), we have

| Rm,i | ≤
[
1 +

2(b− a)qQ(λ+ µ)

Γ(α+ 1)
+

(
2(b− a)qQ(λ+ µ)

Γ(α+ 1)

)2

+ . . .+

(
2(b− a)qQ(λ+ µ)

Γ(α+ 1)

)m−1]
· 1

4nΓ(α+ 1)

·
[
(b− a)α+2L+ (b− a)3L1 + (b− a)2L2

]
+

2(b− a)qQµ

Γ(α+ 1)
· 7

4
ω(V, h)
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·
[
1 +

2(b− a)qQ(λ+ µ)

Γ(α+ 1)
+

(
2(b− a)qQ(λ+ µ)

Γ(α+ 1)

)2

+ . . .+

(
2(b− a)qQ(λ+ µ)

Γ(α+ 1)

)m−2]
=

2(b−a)qQµ
Γ(α+1) ·

7
4ω(V, h)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

+

1
4nΓ(α+1)

[
(b− a)α+2L+ (b− a)3L1 + (b− a)2L2

]
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

(5.11)

Now, by replacing (5.11) and the bound obtained in (5.3), in (5.5), the inequality
(5.4) is obtained. �

Corollary 5.3. Under the conditions of the theorem 5.2, when n→∞ and m→∞,
we have

| y∗(ti)− ym(ti) |→ 0, ∀i = 0, n

which concludes the proposed method is convergent.

Proof. Since lim
h→0

ω(Vm−1, h) = 0 and λ, µ, M , Q and (b− a) are fixed values, so

lim
h→0

1
4nΓ(α+1)

[
(b− a)α+2L+ (b− a)3L1 + (b− a)2L2

]
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

= 0,

lim
h→0

2(b−a)qQµ
Γ(α+1) ·

7
4ω(V, h)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

= 0,

also, using (2.2), we have

lim
m→∞

[
2(b−a)qQ(λ+µ)

Γ(α+1)

]m
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

· 2(b− a)q

Γ(α+ 1)
QM = 0.

�

6. Stability analysis

To prove the stability of the method, we consider a small perturbation in the first
step y0 = g, so we consider the equation (3.2) as follows

x(t) = h(t) +
(t− a)α

Γ(α+ 1)

∫ b

a

K(a, s).F (s, x(s), x(θ(s)))ds

+
1

Γ(α+ 1)

∫ t

a

∫ b

a

(t− τ)α
∂K(τ, s)

∂τ
.F (s, x(s), x(θ(s)))dsdτ, t ∈ [a, b],

(6.1)

where h ∈ C1[a, b] and | g(t)− h(t) |< ε for small ε > 0. Also, assume that M ′ ≥ 0 is
such that

M ′ = max{| F (s, h(s), h(θ(s))) |: s ∈ [a, b]}.
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Using the proposed method for the equation (6.1), we get the sequence of successive
approximations on the points ti = a+ ih, i = 0, n:

x0(ti) = h(ti), i = 0, n,

xm(ti) = h(ti) +
(ti − a)α

Γ(α+ 1)

∫ b

a

K(a, s).F (s, x(s), x(θ(s)))ds

+
1

Γ(α+ 1)

∫ ti

a

∫ b

a

(ti − τ)α
∂K(τ, s)

∂τ
.F (s, x(s), x(θ(s)))dsdτ, m ∈ N,

with computations such as (4.15), we have

x0(ti) = h(ti), i = 0, n,

xm(ti) = xm(ti) +R′m,i, i = 0, n, m ∈ N.

Therefore

| x0(t)− y0(t) |< ε, ∀t ∈ [a, b].

Definition 6.1. [9] The presented method is stable if there are p ∈ N0, a sequence of
continuous functions µm : [0, b− a]→ [0,∞], m ∈ N0 with the property lim

h→0
µm(h) =

0, ∀m ∈ N0 and the constants K1, K2, K3 > 0 independent of h so that

| xm(ti)− ym(ti) |≤ K1ε+K2.h
p +K3.µm(h), ∀i = 0, n, m ∈ N0.

Theorem 6.2. Under the conditions of the theorem 5.2, the presented method is
stable.

Proof. We have

| xm(ti)− ym(ti) |≤| xm(ti)− xm(ti) | + | xm(ti)− ym(ti) |

+ | ym(ti)− ym(ti) |≤| Rm,i | + | xm(ti)− ym(ti) | + | R′m,i |, (6.2)

and based on the relation (5.11):

| Rm,i | ≤
1

4nΓ(α+1)

[
(b− a)α+2L+ (b− a)3L1 + (b− a)2L2

]
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

+

2(b−a)qQµ
Γ(α+1) ·

7
4ω(V, h)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

, (6.3)

| R′m,i | ≤
1

4nΓ(α+1)

[
(b− a)α+2L′ + (b− a)3L′1 + (b− a)2L′2

]
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

+

2(b−a)qQµ
Γ(α+1) ·

7
4ω(V, h)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

, (6.4)
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where L′, L′1, L
′
2 ≥ 0 are Lipschitz constants similar to (4.4) and (4.7).

Since | x0(t)− y0(t) |≤ ε, ∀t ∈ [a, b], so

| x1(t)− y1(t) |≤| x0(t)− y0(t) | |(t− a)α|
Γ(α+ 1)

∫ b

a

|K(a, s)|.|F (s, x0(s), x0(θ(s)))

− F (s, y0(s), y0(θ(s)))|ds+
1

Γ(α+ 1)

∫ t

a

∫ b

a

| (t− τ)α | . | ∂K(τ, s)

∂τ
|

. | F (s, x0(s), x0(θ(s)))− F (s, y0(s), y0(θ(s))) | dsdτ

≤
[
1 +

2(b− a)qQ(λ+ µ)

Γ(α+ 1)

]
· ε,

and for m ≥ 2, we have

| xm(t)−ym(t) |≤| x0(t)− y0(t) | |(t− a)α|
Γ(α+ 1)

∫ b

a

|K(a, s)|

· |F (s, xm−1(s), xm−1(θ(s)))− F (s, ym−1(s), ym−1(θ(s)))|ds

+
1

Γ(α+ 1)

∫ t

a

∫ b

a

| (t− τ)α | . | ∂K(τ, s)

∂τ
|

. | F (s, xm−1(s), xm−1(θ(s)))− F (s, ym−1(s), ym−1(θ(s))) | dsdτ

≤
[
1 +

2(b− a)qQ(λ+ µ)

Γ(α+ 1)
+
(2(b− a)qQ(λ+ µ)

Γ(α+ 1)

)2

+ . . .

+
(2(b− a)qQ(λ+ µ)

Γ(α+ 1)

)m]
· ε ≤ ε

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

. (6.5)

And by replacing (6.3), (6.4) and (6.5) into (6.2), we obtain

| xm(ti)−ym(ti) |≤
(b−a)qQµ
Γ(α+1) · 7ω(V, h)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

+
ε

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

+
[
(b− a)α+2(L+ L′) + (b− a)3(L1 + L′1) + (b− a)2(L2 + L′2)

]
·

1
4nΓ(α+1)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

≤ K1ε+K2.h+K3.µm(h),

where

K1 =
1

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

, K3 =

(b−a)qQµ
Γ(α+1) · 7ω(V, h)

1− 2(b−a)qQ(λ+µ)
Γ(α+1)

,

K2 =

1
4nΓ(α+1)

[
(b− a)α+2(L+ L′) + (b− a)3(L1 + L′1) + (b− a)2(L2 + L′2)

]
1− 2(b−a)qQ(λ+µ)

Γ(α+1)

,

with p = 1 and µm(h) = ω(Vm−1, h). Therefore by definition 6.1, the presented
method is stable. �
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7. Application of the method

In this section, we apply the presented method to obtain the approximate solution
of functional fractional Hammerstein integro-differential equations.

Example 7.1. Consider the following fractional Hammerstein integro-differential
equation of [35, 36, 41]

D
1
2 y(t) =

1

Γ( 1
2 )

(
8

3
t
3
2 − 2t

1
2

)
− t

1260
+

∫ 1

0

ts[y(s)]4ds, (7.1)

with the initial condition y(0) = 0 and exact solution is y(t) = t2 − t. Using the
fractional integral operator on both sides of the equation (7.1) and by using of initial
condition, we obtain

y(t) = t2 − t− t
3
2

945
√
π

+
1

Γ( 1
2 )

∫ t

0

∫ 1

0

(t− τ)
−1
2 τs[y(s)]4dsdτ. (7.2)

We apply the presented method on the (7.2) and the numerical results of the presented
method are given in TABLE 1. We calculate its polynomial interpolation p(t) for

(ti, ym(ti)), i = 1, 2, . . . , n and ‖ y(t) − p(t) ‖2 for different values of n, which are
shown in TABLE 2. It is obviously seen that the numerical results of our method are
more accurate than of the results obtained from referred methods.

Table 1. Numerical results of Example 7.1

t exact solution n = 8 n = 16 n = 24 n = 32 n = 48

t = 0.125 −0.10937500 −0.10938159 −0.10937749 −0.10937640 −0.10937592 −0.10937551
t = 0.250 −0.18750000 −0.18750705 −0.18750261 −0.18750145 −0.18750095 −0.18750052
t = 0.375 −0.23437500 −0.23438225 −0.23437766 −0.23437647 −0.23437596 −0.23437553
t = 0.500 −0.25000000 −0.25000736 −0.25000269 −0.25000149 −0.25000097 −0.25000053
t = 0.625 −0.23437500 −0.23438243 −0.23437771 −0.23437649 −0.23437597 −0.23437554
t = 0.750 −0.18750000 −0.18750748 −0.18750272 −0.18750150 −0.18750097 −0.18750054
t = 0.875 −0.10937500 −0.10938251 −0.10937772 −0.10937651 −0.10937598 −0.10937554
t = 1.000 0.00000000 −0.7534e− 5 −.2733e− 5 −0.1515e− 5 −0.9815e− 6 −0.5504e− 6

Table 2. Absolute errors of Example 7.1

‖ e8 ‖2 ‖ e12 ‖2 ‖ e16 ‖2 ‖ e24 ‖2 ‖ e32 ‖2 ‖ e48 ‖2
Presented method 7.2850e− 6 4.0478e− 6 2.6559e− 6 1.4716e− 6 9.6072e− 7 5.3383e− 7
Ref. [35] − 1.0438e− 4 − 2.6403e− 5 − −
Ref. [41] 6.0313e− 5 − 1.4484e− 6 − 2.3374e− 7 5.3445e− 6
Ref. [36] − 7.7110e− 4 − 2.0755e− 5 − 5.3445e− 6

Example 7.2. As the second example, consider the following fractional Hammerstein
integro-differential equation of Ref. [36]

D
5
6 y(t)−

∫ 1

0

tes[y(s)]4ds =
3

Γ( 1
6 )

(
2t

1
6 − 431

91
t
13
6 + t(248e− 674)

)
, (7.3)
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with the initial condition y(0) = 0 and exact solution y(t) = t−t3. Using the fractional
integral operator on both sides of the equation (7.3) and using of initial condition,
yields

y(t) = t− t3 − 1

Γ( 5
6 )

(8928

55
t
11
6 e− 24264t

11
6

55

)
+

1

Γ( 5
6 )

∫ t

0

∫ 1

0

(t− τ)
−1
6 τes[y(s)]4dsdτ. (7.4)

‖ y(t)− p(t) ‖2 of the presented method and Ref. [36] are given in TABLE 3.

Table 3. Numerical results of Example 7.2

‖ en ‖2 presented method Ref. [36]

‖ e12 ‖2 1.79091184e− 4 2.0862e− 3
‖ e24 ‖2 9.29306806e− 5 6.3440e− 4

Example 7.3. Consider the following functional fractional Hammerstein integro-
differential equation

D
1
2 y(t)−

∫ 1

0

(t− s).
(
(s− 1) + sy(

s

2
)
)
ds =

8

3
√
π
t
3
2 +

7

16
t− 7

60
, (7.5)

with the initial condition y(0) = 0 and exact solution y(t) = t2. Similar to the previous
example, by using the fractional integral operator on both sides of the equation (7.5)
and by using of initial condition, we obtain

y(t) = t2 − 1√
π

(
7t

3
2

12
− 7
√
t

30

)

+
1

Γ( 1
2 )

∫ t

0

∫ 1

0

(t− τ)
−1
2 (τ − s).

(
(s− 1) + sy(

s

2
)
)
dsdτ. (7.6)

The numerical results of the presented method are given in TABLE 4. Also, ‖ y(t)−
p(t) ‖2 is reported in last line.

8. Conclusion

In this paper, we investigated on functional Hammerstein integro-differential equa-
tions of fractional order. Here we also presented an approximate method to solve
these equations. We proved convergence and stability of the method, too. At the
end, we gave some numerical examples, which show the accuracy of the method.
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Table 4. Numerical results of Example 7.3

t exact solution n = 8 n = 24 n = 48

t = 0.125 0.01562500 0.01758606 0.01619027 0.01586463
t = 0.502 0.06250000 0.06410829 0.06302393 0.06273235
t = 0.375 0.14062500 0.14193456 0.14111765 0.14085170
t = 0.500 0.25000000 0.25107388 0.25047139 0.25022308
t = 0.625 0.39062500 0.39151664 0.39108344 0.39084622
t = 0.750 0.56250000 0.56325437 0.56295248 0.56272087
t = 0.875 0.76562500 0.76628063 0.76607752 0.76584684
t = 1.000 1.00000000 1.00059055 1.00045784 1.00022396

‖ en ‖2 1.1959e− 3 4.9113e− 4 2.2686e− 4
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