تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,098 |
تعداد دریافت فایل اصل مقاله | 15,624,775 |
بازیافت حرارت اتلافی موتور دیزل دریایی با استفاده از آب شیرینکن رطوبتزن- رطوبتزدا | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 19، دوره 51، شماره 1 - شماره پیاپی 94، اردیبهشت 1400، صفحه 173-182 اصل مقاله (518.35 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.9610 | ||
نویسندگان | ||
میلاد فیلی1؛ هادی غائبی* 2؛ توحید پریخانی3 | ||
1دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
3دانش آموخته کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
در این مطالعه به منظور بازیافت حرارت اتلافی موتور دیزل دریایی، یک واحد آب شیرینکن رطوبتزن - رطوبتزدا از نوع چرخه آب باز - هوا بسته با گرمایش آب و با هدف تأمین آب شیرین مورد نیاز خدمه کشتیها پیشنهاد داده شده است. انرژی مورد نیاز برای تولید آب شیرین از طریق بازیافت حرارت اتلافی گازهای خروجی موتور دیزل تأمین میشود. برای این سیستم پیشنهادی ابتدا شبیه سازی ترمودینامیکی و تجزیه و تحلیل دقیق انرژی و اگزرژی، به منظور تعیین منابع اصلی بازگشت ناپذیریها و ویژگیهای عملکردی سیستم انجام شده است. علاوه براین تحلیل دقیق پارامتری برای پیبردن به رفتار پارامترهای کلیدی سیستم با پارامترهای عملکردی سیستم نیز بررسی شده است. در این مطالعه مشخص شده که، سیستم توانایی تولید 2746/0 کیلوگرم بر ثانیه آب شیرین با استفاده از 432 کیلووات انرژی اولیه را دارد و همچنین بازده آب شیرینکن و بازده اگزرژی به ترتیب 516/1 و 9/23% محاسبه شده است. از تحلیل اگزرژی میتوان دریافت که در میان تمام اجزای سیستم، واحد گرمکن دارای بیشترین آهنگ تخریب اگزرژی بوده است. | ||
کلیدواژهها | ||
موتور دیزل دریایی؛ بازیافت حرارت اتلافی؛ اگزرژی؛ فرآیند رطوبتزنی-رطوبتزدایی | ||
مراجع | ||
[1] Eurostat, Ten00115, Electricity prices for household consumers, Tech. Rep. European Union, 2013. [2] U.S. Energy Information Administration, Average retail price of electricity to ultimate customers. http://www.eia.gov. [3] Yang M. H. and Yeh R. H., Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery, Energy, Vol. 82, pp. 256–268, Mar. 2015. [4] Dolz V., Novella R., Garcia A., Sanchez J., García A., and Sánchez J., HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy, Appl. Therm. Eng., p. Vol 36, pp 269–278, 2012. [5] Platell O. B., Progress of Saab Scania’s Steam Power Project, in SAE Technical Papers, 1976. [6] Lodwig E., Performance of a 35 HP Organic Rankine Cycle Exhaust Gas Powered System, in SAE Technical Papers, 1970. [7] Jing G., Review of energy utilization technology for marine diesel engine, Diesel Engines, Vol. 6, pp. 1–4, 2010. [8] D. Walraven, B. Laenen, W. D.-E. C. And, U. 2013, and W. D’Haeseleer, “Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources, Energy Convers. Manag., Vol. 66, pp. 220–233, 2013. [9] Larsen U., Pierobon L., Haglind F. and Gabrielii C., Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection, Energy, Vol. 55, pp. 803–812, Jun. 2013. [10] Teng H, Regner G, Cowland C. Waste heat recovery of heavy-duty diesel engines by organic Rankine cycle part I: hybrid energy system of diesel and Rankine engines. SAE Technical Paper 2007. [11] Teng H, Regner G. Improving fuel economy for HD diesel engines with WHR rankine cycle driven by EGR cooler heat rejection. SAE Technical Paper 2009. [12] N. Ghaffour et al., “Renewable energy-driven innovative energy-efficient desalination technologies,” Appl. Energy, Vol. 136, pp. 1155–1165, 2014. [13] Seeking energy efficient solutions for clean water supplies. http://lienhard.scripts.mit.edu/research/. [14] Nawayseh N. K. N., Farid M. M. M., Al-Hallaj S., Al-Timimi A. R., Solar desalination based on humidification process - I. Evaluating the heat and mass transfer coefficients, Energy Convers. Manag., Vol. 40, No. 13, pp. 1423–1439, 1999. [15] Farid M. M. et al., A simulation study to improve the performance of a solar umidification-dehumidification desalination unit constructed in Jordan, Desalination, Vol. 109, No. 3, pp. 277–284, 1997. [16] Goosen, M. F. A., Sablani, S. S., Shayya, W. H., Paton, C. & Al-Hinai, “Thermodynamic and economic considerations in solar desalination, Elsevier, Vol. 129, pp. 63–89, 2000. [17] Farid M. M., Parekh S., Selman J. R. and Al-Hallaj S., Solar desalination with a humidification-dehumidification cycle: mathematical modeling of the unit, Desalination, Vol. 151, No. 2, pp. 273–280, August 1998. [18] Dai Y. J. and Zhang H. F., Experimental investigation of a solar desalination unit with humidification and dehumidification, Desalination, Vol. 130, No. 2, pp. 169–175, Nov. 2000. [19] حسینی م.ا. و سرحدی ف.، بررسی عملکرد یک دستگاه تولید آب شیرین رطوبتزن-رطوبتزدا متصل به کلکتورهای خورشیدی فتوولتائیک حرارتی. نشریه مهندسی مکانیک امیرکبیر، دوره 49 ، شماره 3 ، صفحات 653 تا 662، سال 1396. [20] مهدیزاده گوهری ع.ز. و عامری م.، آنالیز ترمودینامیکی آب شیرینکن رطوبتزا – رطوبتگیر با چرخه آب باز و هوا نیمهباز. نشریه مهندسی مکانیک امیرکبیر، دوره 49 ، شماره 3، صفحات 643 تا 652، سال 1396. [21] Ashrafizadeh S. A. S., Desalination M. A., and Amidpour M., Exergy analysis of humidification-dehumidification desalination systems using driving forces concept, Desalination, Vol. 285, pp. 108–116, 2012. [22] مجبدی غ. و حسیننژاد ف.، تحلیل ترمواگزرژی اجزای سیکل آب شیرینکن خورشیدی رطوبتزنی و رطوبتزدایی. اولین کنفرانس بین المللی فناوریهای نوین در علوم، 16 شهریور ماه، سال 1396. [23] Song J., Song Y. and Gu C., Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines, Energy, Vol. 82, pp. 976–985, Mar. 2015. [24] J. Song and C. Gu, “Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery,” Appl. Energy, Vol. 156, pp. 280–289, Oct. 2015. [25] Bahadori A., Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain, Appl. Therm. Eng., Vol. 31, No. 8–9, pp. 1457–1462, Jun. 2011. [26] Klein SA. Engineering equation solver. Academic professional version 9.214; 2012. <http://www.fchart.com/ >. [27] Sharqawy M. H., Antar M. A., Zubair S. M. and Elbashir A. M., Optimum thermal design of humidification dehumidification desalination systems, Desalination, Vol. 349, pp. 10–21, Sep. 2014. [28] Prakash Narayan G., M. G. St. John, Zubair S. M., and Lienhard J. H., Thermal design of the humidification dehumidification desalination system: An experimental investigation, Int. J. Heat Mass Transf., Vol. 58, No. 1–2, pp. 740–748, Mar. 2013. [29] Zubair M. I., Al-Sulaiman F. A., Antar M. A., Al-Dini S. A. and Ibrahim N. I., Performance and cost assessment of solar driven humidification dehumidification desalination system, Energy Convers. Manag., Vol. 132, pp. 28–39, Jan. 2017. [30] Bejan A, Tsataronis G, Moran M. Thermal design and optimization. NY, USA: John Wiley & Sons; 1996. Dincer I, Rosen M. Exergy: energy, environment and sustainable development. Newnes. A.2012. | ||
آمار تعداد مشاهده مقاله: 577 تعداد دریافت فایل اصل مقاله: 484 |