تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,453 |
تعداد دریافت فایل اصل مقاله | 15,214,280 |
کارایی روش سطح پاسخ بر مبنای طرح باکس بنکن در بهینه سازی فرایند جذب مس و کادمیم از محلولهای آبی با استفاده از کیتوزان | ||
دانش آب و خاک | ||
مقاله 5، دوره 29، شماره 3، مهر 1398، صفحه 55-66 اصل مقاله (953.19 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مرضیه پیری* 1؛ ابراهیم سپهر2؛ عباس صمدی3؛ خلیل فرهادی4؛ محمد علیزاده خالد آباد5 | ||
1دانش آموخته دکتری گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه | ||
2دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه | ||
3استاد گروه علوم خاک؛ دانشگاه ارومیه | ||
4استاد گروه شیمی؛ دانشگاه ارومیه | ||
5استاد گروه صنایع غذایی؛ دانشگاه ارومیه | ||
چکیده | ||
وجود فلزات سنگین در منابع آب و پساب از مشکلات زیست محیطی بسیاری از جوامع است. فرایند جذب و استفاده از جاذبهای ارزان قیمت یکی از روشهایی است که در سالهای اخیر توجهات زیادی را به خود جلب کرده است. هدف این پژوهش بررسی تأثیر کیتوزان در جذب فلزات سنگین کادمیم و مس از محلولهای آبی با استفاده از روش سطح پاسخ بر مبنای مدل باکس بنکن میباشد. برای این منظور آزمایشات پیمانهای جذب به منظور ارزیابی اثر متغیرهای مستقل شامل pH، قدرت یونی و غلظت با استفاده از روش ذکر شده برای ارزیابی اثرات این متغیرها انجام گردید. از آنالیز واریانس یک طرفه برای تجزیه و تحلیل دادهها استفاده شد. با توجه به مقادیر ضریب تعیین (99/0=R2) وR2 متعادل شده (99/0=R2adj) میتوان گفت مدل به دست آمده برای تحلیل دادهها مناسب میباشد. آنالیز واریانس یک طرفه (0001/0>p) نشان داد مدل درجه دو بهترین مدل برای تعیین برهمکنش متغیرهای مطالعه میباشد. شرایط بهینه برای جذب حداکثر مس و کادمیم از محلولهای آبی به ترتیب در محدوده pH 47/5 و 26/5، غلظت 200 و 8/168 (mg L-1) و قدرت یونی 03/0 (mol L-1) بدست آمد. مقادیر پیشبینی شده جذب برای شرایط بهینه ذکر شده برای مس و کادمیم به ترتیب 68/83 و 07/45 (mg g-1) شد. بنابراین روش سطح پاسخ میتواند در بهینه سازی حذف کادمیم و مس از محلولهای آبی به وسیله کیتوزان موثر باشد. | ||
کلیدواژهها | ||
باکس بنکن؛ کیتوزان؛ کادمیم؛ مس؛ روش سطح پاسخ | ||
مراجع | ||
Ahmadi A, Heidarzadeh S, Mokhtari AR, Darezereshki E and Asadi Harouni H, 2014. Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology. Journal of Geochemical Exploration. 147:151-158.
Alloway BJ, 1990. Heavy Metals in Soils. John Wiley and Sons Inc, New York.
Amini M, Younesi H and Bahramifar N, 2009. Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Journal of Colloids and Surfaces. A: Physicochemical and Engineering Aspects 337(1-3): 67-73.
Chiban M, Zerbet M, Carja G, and Sinan F, 2011. Application of low-cost adsorbents for arsenic removal, A review. Journal of Environmental Chemistry and Ecotoxicology. 4(5): 91-102.
Chowdhury S, and Saha P, 2010. Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal 164(1): 168-77.
Dang VBH, Doan HD, Dang-Vu T, and Lohi A, 2009. Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresource Technology 100:211-9.
Deng SB, and Ting YP, 2005. Characterization of PEI-modified biomass and biosorption of Cu (II), Pb(II) and Ni(II). Water Research 39: 2167–2177.
Davis TA, Volesky B, and Vieira RHSF, 2000. Sargassum seaweed as biosorbent for heavy metals. Water Research 34 (17): 4270-4278.
El-Naas MH, Abu Al-Rub F, Ashour AAl, and Marzouqi M, 2007. Effect of competitive interference on the biosorption of lead(II) by Chlorella vulgaris. Chemical Engineering and Processing: Process Intensification 46(12): 1391–1399.
Gavhane YN, Gurav Atul S, and Yadav Adhikrao V, 2013. Chitosan and its applications, A review of literature, International Journal of Research in Pharmaceutical and Biomedical Sciences 4(1): 312–332.
Guibal E, Saucedo I, Roussy J, and Le Cloirec P, 1994. Uptake of uranyl ions by new sorbing polymers: Discussion of adsorption isotherms and pH effect. Journal of Reactive Polymers 23(2-3): 147-156.
Han R, Zhang J, Zou W, Xiao H, Shi J, and Liu H, 2006. Biosorption of copper (II) and lead (II) from aqueous solution by chaff in a fixed-bed column. Journal of Hazardous Materials 133(1): 262-8.
Jun C, Jin L, Changgao W, Jianguo L, Ying H, Jianhong Y, Yumin D, and Hua Z, 2013. Parametric optimization of extracellular chitin deacetylase production by Scopulariopsis brevicaulis. Journal of Biocatalysis and Biotransformation 2(1): 1–5.
Kaczala F, Marques M, and Hogland W, 2009. Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust. Bioresour Technology 100(1): 235-43.
Katsou E, Malamis S, and Haralambous KJ, 2011. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Chemosphere 82(4): 557-64.
Khor E, 2001. Chitin: Fulfilling a Biomaterials Promise, Elsevier Science and Technology: Maryland Heights, MO, USA, Appendix 2.
Kosa SA, Al-Zhrani G, and Abdel Salam M, 2011. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal. 181-182: 159-168.
Krajewska B, 2004. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Journal of Enzyme and Microbial Technology35:126-139.
Kumar U, 2013. Agricultural products and by- products as a low cost adsorbent for heavy metal removal from water and wastewater, A review. Scientific Research and Creativity 1(1): 1-5.
Kyzas GZ, Kostoglou M, and Lazaridis NK, 2009. Copper and chromium (VI) removal by chitosan derivatives-Equilibrium and kinetic studies. Journal of Chemical Engineering 152(2-3): 440-448.
Liu A, and Richard G, 1999. Modeling adsorption of copper, cadmium and lead on purified humic acid. American Chemical Society 16: 3902-3909.
Malairajan S, and Peters E, 2013. Removal of toxic heavy metals from synthetic wastewater using a novel biocarbon technology. Journal of Environmental Chemical Engineering 4: 629-1384.
Malkoc E, and Nuhoglo Y, 2005. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials 127: 120–128.
Marandi R, and Amir Afshar H, 1387. Biological uptake of Zn(II) and Pb(II) by non-living biomass Phanerochaete chrysosporium. Environmental Science and Technology 10 (4): 196-206.
Montgomery, DC. 2005. Design and Analysis of Experiments, Wiley, Hoboken, N.J.
Muzzarelli RA, Ilari P, Tarsi R, Dubini B, and Xia W, 1994. Chitosan from Absidia coerulea. Carbohydrate Polymers. 25(1): 45–50.
Sanchez AG, Ayuso EA, and De Blas OJ, 1999. Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Minerals 34: 469-477.
Sannasi P, Kader J, Ismail BS, and Salmijah S, 2006. Sorption of Cr (VI), Cu (II) and Pb (II) by growing and non-growing cells of a bacterial consortium. Bioresource Technology 97(5): 740-7.
Sauerbeck DR, and Hein A, 1991. The nickel uptake from different soils and its prediction by chemical extractions. Water Air Soil Pollution 57-58: 861-871.
Singanan M, and Peters E, 2013. Removal of toxic heavy metals from synthetic wastewater using a novel biocarbon technology. Journal of Environmental Chemical Engineering 1(4): 884-90.
Sobhanardakani S, Zandipak R, Bonyadi M, Parvizimosaed H, Moslemi M, Tahergorabi M, Hosseini SM. 2015. Evaluation of removal efficiency of cr (vi) ions from aqueous solution using chitosan. Journal of Chemical Health Risks 5(1): 29–38.
Stobel BW, 2001. Influence of vegetation of low-molecular weight carboxylic acids in soil solution-a review. Geoderma 99: 169-198.
Tizaoui C, Rachmawati SD, and Hilal N, 2012. The removal of copper in water using manganese activated saturated and unsaturated sand filters. Chemical Engineering Journal 209: 334-344.
Yaacoubi H, Zidani O, Mouflih M, Gourai M, and Sebti S, 2014. Removal Cadmium from water using natural phosphatas as adsorbent. Procedia Engineering 83: 386-393.
Vakili M, Rafatullah M, Salamatinia B, Zuhairi Abdullah A, Hakimi Ibrahim M, Tan K, Gholami Z, and Amouzgar P, 2014. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater. A review. Carbohydrate Polymers 113: 115-130.
Wang J, and Chen C, 2006. Biosorption of heavy metals by Saccharomyces cerevisiae. a review, Biotechnology Advances 24(5): 427-51.
Wang L, Meng CG, Han M, and Ma W, 2008. Lithium uptake in fixed-pH solution by ion sieves. Journal of Colloid and Interface Science 325(1): 31-40.
Xu J, Yang L, Wang Z, Dong G, Huang J and Wang Y, 2006. Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Journal of Chemosphere 62: 602-607
Zolgharnein J, Shahmoradi A, and Ghasemi JB, 2013. Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves. Journal of Chemometrics 27(1): 12-20.
Zhou JL, and Kiff RJ, 1991.The uptake of copper from aqueous solution by immobilized. Journal of Chemical Technology and Biotechnology 52: 317–330.
| ||
آمار تعداد مشاهده مقاله: 589 تعداد دریافت فایل اصل مقاله: 843 |