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Abstract A new simplified analytical formula is given for solving the Cauchy problem for a
homogeneous system of fractional order linear differential equations with constant

coefficients (SFOLDECC). The exponential function matrix in this formula is re-

placed by a Taylor series. Next, an analytical expression of the integral is obtained,
with the help of which, for the transition matrix, a relation is obtained that allows

one to obtain a solution of the Cauchy problem with high accuracy. The results also

apply to the case of inhomogeneous systems with constant perturbations and are
illustrated by numerical examples.
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1. Introduction

In work [12], the solution of the (SFOLDECC) based on the Mittag-Leffler function
is considered. However, in [5,6] such solution is given for the first time on the basis of
an exponential function, which from a computational point of view is more appropri-
ate, since the exponential function can be calculated quite accurately [2–4,7,8,10]. At
the same time, in addition to the exponential function, this solution also includes an
integral expression, which presents certain difficulties for the calculation [1,11,13,15].
Therefore, if instead of the exponential function we substitute its Taylor expansion,
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then we can obtain these integrals analytically, but the errors of the solution depend
on the selected number of terms from the reduced series.

In this paper, we obtain analytical solution formulas, which, in contrast to [6],
contain only one integral expression, which also makes it easier to obtain the solution
of SFOLDECC. Next, substituting the expansion of the exponential function in the
integrand, we obtain the numerical-analytical formula for the solution in the form of a
Taylor series. The results are illustrated with a numerical example and a comparative
analysis with the results of [12] is given.

2. Simplified Formula of Solution for the Cauchy Problem

As is known for solving of Cauchy problem SFOLDECC

Dαx (t) = Ax (t) , x (t0) = x0, t > t0 > 0, (2.1)

there is the following analytical formula [6]

x (t) =


2q∑
s=0

A
s+2q+1
2p+1

E t
s+1
2q+1

0
s+1
2q+1 !

+A
2q+1
2p+1

t0∫
0

(t0 − τ)
s+1
2q+1

s+1
2q+1 !

eτA
2q+1
2p+1

dτ

+

2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !


−1

×

{
2q∑
s=0

A
s+2q+1
2p+1

[
E
t

s+1
2q+1

s+1
2q+1 !

+A
2q+1
2p+1

t∫
0

(t− τ)
s+1
2q+1

s+1
2q+1 !

eτA
2q+1
2p+1

dτ


+

2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

s−2q
2q+1 !

}
x (t0) ,

(2.2)

where A is the constant matrix of dimension n× n, x (t) is state vector of dimension
n, x (t0) is the initial vector, α ∈ (0, 1) and α = 2p+1

2q+1 , here p and q are natural

numbers, E is an unit matrix of dimension n× n.
As shown in [5], any real number can be approximated to a rational one with

any accuracy , and any rational number to a number equal to the ratio of two odd
numbers.

To simplify formulas (2.2), we use the relation [17]

Dα
x0
u (ξ) =

u (x0) ξ−α

(−α)!
+

∫ ξ

x0

(ξ − t)−α

(−α)!
u′ (t) dt, (2.3)
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which defines derivatives of u (x) with order α. Using the expression (2.3) in (2.2),
after simple transformations [5, 6] we reduce the relation (2.2) to the form

x(t) =

et0A 2q+1
2p+1

2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !

−1
2q∑
s=0

[
A

s
2p+1 et0A

2q+1
2p+1 t

s−2q
2q+1

s−2q
2q+1 !

+A
s+2q+1
2p+1

t∫
t0

(t− τ)
s−2q
2q+1

s−2q
2q+1 !

eA
2q+1
2p+1 τdτ

x0

=

 2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !

−1
2q∑
s=0

[
A

s
2p+1

t
s−2q
2q+1

s−2q
2q+1 !

+A
s+2q+1
2p+1

t∫
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(t− τ)
s−2q
2q+1

s−2q
2q+1 !

eA
2q+1
2p+1 (τ−t0)dτ

x0.

(2.4)

Note that in formula (2.4) the integrand function contains a weak singularity, since
s−2q
2q+1 < 1, and this allows the disappearance of such singularity after integration.

Thus, the following statement holds:

Theorem 2.1. Consider Cauchy problem (2.1), such that A is constant matrix. Then
the solution of (2.1) is represented in the form of (2.4). Note that formula (2.4) in
the classical case, i.e. when α = 1 coincides with the known [10]. Indeed in this case
ap = 0, q = 0 and

x (t) =e−At0

eAt0 +A

t∫
t0

eAτdτ

x0

=
[
E + e−At0

(
eAt − eAt0

)]
x0 = eA(t−t0)x0.

(2.5)

3. Method of Calculations

The integrand in (2.4) is such that its integration, both analytically and numer-
ically, facing serious difficulties. To avoid this, we expand the exponential function

eA
2q+1
2p+1 (τ−t0) in (2.4) by the Taylor series in a neighborhood of τ = t, as

eA
2q+1
2p+1 (τ−t0) =

∞∑
k=0

Ak
2q+1
2p+1 e(t−t0)A

2q+1
2p+1 (τ − t)k

k!
. (3.1)



CMDE Vol. 8, No. 1, 2020, pp. 212-221 215

Substituting the series (3.1) into (2.4) we obtain

x (t) =

 2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !

−1
2q∑
s=0

[
A

s
2p+1

t
s−2q
2q+1

s−2q
2q+1 !

+

∞∑
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(−1)
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s+(k+1)(2q+1)
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2p+1

×
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(t− τ)
k+ s−2q

2q+1

s−2q
2q+1 !

dτx0.

(3.2)

By integrating the power function in (3.2), finally, to solve the Cauchy problem (2.1),
we get

x (t) =

 2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !
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2q∑
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A

s
2p+1

t
s−2q
2q+1

s−2q
2q+1 !

−
∞∑
k=0

(−1)
k+1

k!
A

s+(k+1)(2q+1)
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2p+1

× (t− t0)
k+ s+1

2q+1

s−2q
2q+1 !

(
k + s+1

2q+1

)
x0.

(3.3)

Let

xr (t) =

 2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !

−1
2q∑
s=0

[
A

s
2p+1

t
s−2q
2q+1

s−2q
2q+1 !

− e(t−t0)A
2q+1
2p+1

s−2q
2q+1 !
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k=0

(−1)
k+1

k!
A

s+(k+1)(2q+1)
2p+1

× (t− t0)
k+ s+1

2q+1(
k + s+1

2q+1

)
x0, r ∈ N.

(3.4)

In practice, the computation (3.4) stops when this condition

‖xl (t)− xl−1 (t)‖ > ‖xl+1 (t)− xl (t)‖ , (3.5)

does not hold.
corresponding function. So we have the following
Algorithm 1.
1. The matrix A and the initial condition x0 from (2.1) are given.
2. In xr, r = 1, 2, 3, are calculated using (3.4), i.e. l = 3.
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3. The condition ‖xl (t)− xl−1 (t)‖ < ‖xl+1 (t)− xl (t)‖ is checking. If it is sat-
isfied, the calculation process is stopped and the xl (t) is accepted as the solution.
Otherwise, go to step 4.

4. Put l = l + 1 and calculate xl (t) by (3.4) and go to step 3.
We illustrate the results in the following example from [2].

Example 1. The scalar case is considered, i.e. in equation (2.1), let A = −1,
and x0 = 1. The calculation is carried out on the interval [1, 3]. The interval step is
h = 3−1

5 , i.e. the segment is divided into 5 points. For various values of α , the xr (t)
is calculated by the formula (3.4). According to the formula (3.117) given in [16], the
xM (t) is calculated. In Table 1, a number of a comparison between iteration steps of
our method and the method is presented in M have been given (3.5).

Table 1. Comparison of the number of iteration steps
α ‖xr (t)− xM1001[16] (t)‖Iteration steps r Iteration steps M
1/3 0.314 23 7
1/5 0.237 23 11
5/7 0.4248 37 4
1/7 0.1707 37 15
3/7 0.262 27 5

At α = 1 the xr(t) is calculated by the formula (3.4), and we get

‖x37 (t)− x36 (t)‖ < ‖x38 (t)− x37 (t)‖ ,

so we take x37(t) as a solution. For this case the analytical solution xA(t) is calculated
by the formula (2.4).

4. Solution of the Cauchy Problem (2.1) with Constant Perturbations

Let consider the following Cauchy problem

Dαx (t) = Ax (t) +B (t) , x (t0) = x0, (4.1)

where B (t) is the vector of dimension n.
As is known [12], the solution of the Cauchy problem (4.1) has the form 1

x (t) =

∞∑
k=0

Ak
(t− t0)(k+1)α−1

[(k + 1)α− 1]!
x0 +

t∫
t0

∞∑
k=0

Ak
(t− ξ)(k+1)α−1

[(k + 1)α− 1]!
B (ξ) dξ. (4.2)

In the case when the vector B (t) = B is constant, it is easy to show that in (4.2)
the integral can be calculated and we have the following analytical formula

x (t) =

∞∑
k=0

Ak
(t− t0)(k+1)α−1

[(k + 1)α− 1]!
x0 +

∞∑
k=0

Ak
(t− t0)(k+1)α

[(k + 1)α]!
B. (4.3)

1 The relation (4.1) at t = t0 has the singularities that turns into infinity [12]
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Function (4.3) is a solution of the Cauchy problem (4.1) using the Mittag-Lefler
function. Now, using expressions (2.4), we transform function (4.3) through the
exponential function in the following form

x (t) =

 2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !

−1{
2q∑
s=0

[
A

s
2p+1

t
s−2q
2q+1

s−2q
2q+1 !

+A
s+2q+1
2p+1

t∫
t0

(t− τ)
s−2q
2q+1

s−2q
2q+1 !

e(τ−t0)·A
2q+1
2p+1

dτ

x0+

+

 t∫
t0

2q∑
s=0

(
A

s
2p+1

η
s−2q
2q+1

s−2q
2q+1 !

+A
s+2q+1
2p+1

η∫
t0

(η − τ)
s−2q
2q+1

s−2q
2q+1 !

e(τ−t0)A
2q+1
2p+1

dτ

 dη

B
 .

(4.4)

Thus, the following theorem is proved.

Theorem 4.1. Let in the Cauchy problem (4.1) B (t) = B is the constant matrix.
Then the solution of the corresponding Cauchy problem is represented in the form of
(4.4).

Note that for p = 0, q = 0 (i.e. α = 1) from (4.4) we have

x (t) =


E +A

t∫
t0

e(τ−t0)Adτ

x0 +

t∫
t0

E +A

η∫
t0

e(τ−t0)Adτ

 dη ·B


= eA(t−t0)x0 +

t∫
t0

eA(η−t0)dη ·B = eA(t−t0)x0 +A−1
(
eA(t−t0) − E

)
·B,

(4.5)

which coincides with the classical solution (at α = 1) from [9,10,14].

Note that, in (4.4), similarly to §3, by expanding e(τ−t0)A
2q+1
2p+1

at a nearby point
τ = η whit a Taylor series (3.1), we have (the first term before the initial data x0,
has already been transformed in §3, therefore only the last integral term is considered
here)
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J1 =

t∫
t0

A
s+2q+1
2p+1 dη

η∫
t0

(η − τ)
s−2q
2q+1

s−2q
2q+1 !

e(τ−t0)A
2q+1
2p+1

dτ

=

t∫
t0

A
s+2q+1
2p+1

 η∫
t0

(η − τ)
s−2q
2q+1

s−2q
2q+1 !

∞∑
k=0

Ak
2q+1
2p+1 e(η−t0)A

2q+1
2p+1 (τ − η)

k

k!
dτ

 dη

= −
∞∑
k=0

(−1)
k
A

(k+1)(2q+1)+s
2p+1

∫ t

t0

e(η−t0)A
2q+1
2p+1

dη

η∫
t0

(η − τ)
k+

s−2q
2q+1

s−2q
2q+1 !k!

d (η − τ)

=

∞∑
k=0

(−1)
k A

(k+1)(2q+1)+s
2p+1

s−2q
2q+1 !k!

t∫
t0

e(η−t0)A
2q+1
2p+1 (η − t0)

k+ s+1
2q+1

k + s+1
2q+1

dη.

(4.6)

Now by expanding the function e(η−t0)A
2q+1
2p+1

to Macloren’s series as

e(η−t0)A
2q+1
2p+1

=

∞∑
l=0

[
(η − t0)A

2q+1
2p+1

]l
l!

, (4.7)

and substituting (4.7) into (4.6), we have

J1 =

∞∑
k=0

(−1)
k A(k+1)(2q+1)+s

s−2q
2q+1 !k!

(
k + s+1

2q+1

) ∞∑
l=0

Al
2q+1
2p+1

l!

(t− t0)
l+k+ s+1

2q+1 +1

l + k + s+1
2q+1 + 1

. (4.8)

Taking into account (4.8) in the last integral (4.4) we have

t∫
t0

2q∑
s=0

[
A

s
2p+1

η
s−2q
2q+1

s−2q
2q+1 !

+A
s+2q+1
2p+1

∫ η

t0

(η − τ)
s−2q
2q+1

s−2q
2q+1 !

e(τ−t0)A
2q+1
2p+1

dτ

]
dη ·B

=

2q∑
s=0

A
s

2p+1


 t s+1

2q+1

s+1
2q+1 !

− t
s+1
2q+1

0
s+1
2q+1 !

+ J1

B.

(4.9)

Taking into account (3.3) and (4.9) in (4.4), we obtain
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x (t) =

 2q∑
s=0

A
s

2p+1
t
s−2q
2q+1

0
s−2q
2q+1 !

−1{
2q∑
s=0

(
A

s
2p+1

t
s−2q
2q+1

s−2q
2q+1 !

−e
(t−t0)A

2q+1
2p+1

s−2q
2q+1 !

∞∑
k=0

(−1)
k+1

k!
A

s+(k+1)(2q+1)
2p+1 · (t− t0)

k+ s+1
2q+1

k + s+1
2q+1

x0

+

2q∑
s=0

A
s

2p+1

 ∞∑
k=0

(−1)
k A(k+1)(2q+1)+s

s−2q
2q+1 ! · k! ·

(
k + s+1

2q+1

)
×
∞∑
l=0

Al
2q+1
2p+1

l!

(t− t0)
l+k+ s+1

2q+1 +1(
l + k + 1 + s+1

2q+1

)
+

 t
s+1
2q+1

s+1
2q+1 !

− t
s+1
2q+1

0
s+1
2q+1 !

B
 .

(4.10)

as the solution of the Cauchy problem (4.1).In (4.10), we replace the infinite sums
with the r + 1 terms and denote the obtained expressions by xr (t). In this case, as
in §3, if

‖xr (t)− xr−1 (t)‖ > ‖xr+1 (t)− xr (t)‖ , (4.11)

then we continue the calculation process, otherwise the process are stopped and we
put x = xr as a solution. So our algorithm will be as the following:

Algorithm 2.
1. From (4.1) the matrices A , perturbation vector B and the initial data x0 are

formed.

2. A
s+(k+1)(2q+1)

2p+1 are calculated (at different values of k and s all degrees of the

multiplier A are obtained from (4.10)), tk+ s+1
2q+1 (at different values of k, s and q all

possible degrees t0, (t− t0), t), s−2q
2q+1 , k, l + k + 1 + s+1

2q+1 , e
(t−t0)A

2q+1
2p+1 are obtained.

3. xr (t) are calculated from (4.10) (instead of the infinite sum from (4.10), r + 1
terms are taken).

4. The condition (4.11) is checked, if it is satisfied, the calculation process contin-
ues, otherwise the calculation process stops and xr (t) is accepted as the solution.

Example 2. In this paper, it is shown that the reduced solution (64) for the initial
problem (53) from [12] is not true. Indeed, in [12] it is shown that the solution of the
initial problem

y′′ + 3D13/2y + y = 8
y(0) = 0, y′(0) = 0, t ∈ (0, 1)

(4.12)

has the form (in [12] this is numbered (64)).
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y(t) = 10−2Re[(−4.8 + 1.4i)E1/2(λ1t
1/2) + (0.9− 7.4i)E1/2(λ2t

1/2)+
+0.348E1/2(λ3t

1/2)− 0.59E1/2(λ4t
1/2)],

(4.13)

where

λ1 = 0.363− 0.556i, λ2 = 0.363 + 0.556i,
λ3 = −2.962, λ4 = −0.765

and

E1/2

(
λkt

1/2
)

=

∞∑
m=0

(
λkt

1/2
)m

Γ
(
m
2 + 1

) , k = 1, 4. (4.14)

Let us show that from (4.13) both, y (0) and y′ (0) don’t satisfy the initial condi-
tions (4.12). Indeed, taking into account (4.14) in solution (4.13), after some simple
transformations for y (t) we have the following representation

y (t) = 10−2Re

{ ∞∑
m=0

tm/2

Γ
(
m
2 + 1

) [(−4.8 + 1.4i) (0.363− 0.556i)
m

+

+ (0.9− 7.4i) (0.363 + 0.556i)
m

+ 0.348 (−2.962)
m − 0.59 (−0.765)

m
]} =

= −0.0412 + 10−2Re

{ ∞∑
m=1

tm/2

Γ
(
m
2 + 1

) [(−4.8 + 1.4i) (0.363− 0.556i)
m

+

+ (0.9− 7.4i) (0.363 + 0.556i)
m

+ 0.348 (−2.962)
m − 0.59 (−0.765)

m
]} .

(4.15)

At t = 0 from (4.15) for y (0) we obtain

y (0) = −0.0412, (4.16)

i.e., the first initial condition of the Cauchy problem (4.12) is not satisfied [18].

5. Conclusion

In this paper, a solution of the Cauchy problem for homogeneous and inhomoge-
neous systems of fractional-order linear ordinary differential equations with constant
matrix coefficients and perturbations is given. It is shown that, in contrast to the
known [10], this approach is based on the exponential function obtained from the
Mittag-Lefler function. Unlike existing results [12, 16, 18], this method is better im-
plemented on computer and gives more accurate results.
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