A parametric effectiveness and Temperature distribution investigation of three-fluid heat exchanger with three thermal communication

Reza Rastgar
Department of Energy System Engineering, K. N. Toosi University of Technology Tehran, Iran

Amir Farhang Sotoodeh
Energy and Environment Faculty, Niroo Research Institute, Tehran, Iran

Majid Amidpour
Department of Energy System Engineering, K. N. Toosi University of Technology Tehran, Iran

Abstract
In addition to variable properties of fluids, heat interaction with ambient, and axial wall conduction, the temperature distribution of a three-fluid heat exchanger, is strongly affected by Geometric and design parameters. Geometric parameters such as exchanger length and tube diameter and design parameters are fluid flow rate and ambient temperature. In this study, the effect of geometric and design parameters on the temperature distribution and effectiveness of a three-fluid heat exchanger with three thermal communication have been investigated. The governing equations on the flow, are simulated considering heat-in-leak to the cold fluid and variable properties of the fluids, and are solved based on the first law of thermodynamics and analytical methods. Cooling the hot fluid and heating the cold fluid, have been considered as the objective of the three-flow heat exchanger, in order to effectiveness investigation. The effect of ambient heat leak on the temperature profile, will result in an enhancement in the cold effectiveness and a reduction on hot effectiveness. Increasing ambient temperature, enhances the effects of heat leak and the cold fluid temperature profile, will result in a higher hot effectiveness and reduces the cold effectiveness. Due To An increase in the hot flow rate, both the hot and cold effectiveness are enhanced.

Keywords: Three-fluid heat exchanger, Temperature distribution, Effectiveness, Thermal interaction, variable properties of fluid.
تحمیل بازاریابی توزیع دما و کارایی ماده‌های کرملی -
دما و کارایی، به طور مجزا برداشته شود. مدل نتایج بدست آمده در این پژوهش، مدلی که بوده و می‌تواند کارهای همگامی کن گرماتی، گرماتی لوله‌ای سه‌جایی مواردی با سه ارتباط گرماتی و با حر نو آریش کرده مورد استفاده قرار می‌گیرد. بر این مقاله معادلات استخراجی به منظور بررسی تاثیر برخی پارامترهای هندسی و طراحی از قبیل طول و قطر میاده‌کن، دیب گرمای یک یا چند گرمایی یا دیمای محیط و ضریب چالجیکی، بر توسعه دما و کارایی مورد بررسی قرار گرفته است. محاسبات نتایج بدست آمده در مورد حل معادلات، با مقایسه با مقاله کریشنا و همکاران (1)، بررسی شده است. در هر دو مقایسه صورت گرفته، تطیف کامل پیوسته و دمای محیط گرمایی شده است. که بیانگر محاسبه استخراج و حل معادلات توسعی دما می‌باشد. پس از اطلاع از درستی مدل‌ها، استخراج و حل آن، تحلیل پارامترهای توسعی دما و کارایی صورت گرفته است. از موارد نوآوری ای اگر بطور خلاصه متون به موارد بیل اشاره نمود:

1- دستیابی به مدلی توسعی دما، میاده‌کن سه‌جایی با در نظر گرفتن پارامترهای اصلی، بدون باید بی‌بندی نشود.

2- حل مدل‌های توسعی در نظر گرفتن خواص منتشر شیمیایی، لجستیک و طرحی گرمایی وارد

3- بررسی میزان تاثیر بخش پارامترهای موتور بر کارایی و توسعی دما.

2- فرمول بنیادی دمای و حل معادلات

1- نحوه ارتباط سه‌جایی و فرضیات

یک مدل‌کن سه‌جایی مواردی با سه ارتباط گرماتی بین سه‌جایی سرد، گرم و مایبی در نظر گرفته می‌شود و هدف‌گر که در شکل 1 نشان داده شده است، هر جریان با دو جریان دیگر در ارتباط گرماتی می‌باشد. جریان 1 علاوه بر ارتباط گرماتی با جریان‌های 2 و 3، در تعامل گرماتی با محیط نیز می‌باشد. بر اساس جهت حرکت یک از جریان‌ها، در جهت محور افقی و ب‌آ در جهت محوری افقی باشد. 4

نوع آریش جریانی طبق شکل 2 ایجاد می‌شود.

1- معادلات

با در نظر گرفتن قانون اول ترمودینامیک برای یک مان از هر یک از جریان‌ها، مدل‌های برمی‌خواهی می‌شوند (1):

\[
\rho \frac{d}{dx} (\rho \mathbf{v}) = 0
\]

\[
\rho \frac{d}{dx} (\rho \mathbf{v} \mathbf{v}) = 0
\]

\[
\rho \frac{d}{dx} (\rho \mathbf{v} \mathbf{v}) = 0
\]

در مدل‌ها (1) تا (3) مقادیر آن‌ها با مقدار 101 بار جریان با جهت موقتی محور X و با 1 - برای جریان با خلاصه محور X ها جابجایی می‌شود. این محور این محورات برای 4 نوع آریش
\[
\begin{align*}
\text{3-2 حل تحلیلی معادلات} & \\
\text{معادلات حاکم را می‌توان به صورت معادلات (6) نوشت:} & \\
\frac{d\theta}{dx} = \frac{\theta}{x} \times \frac{4}{3} & (5)
\end{align*}
\]

که در آن

\[
\theta_{\text{cin}} = \frac{T_{\text{cin}} - T_{\text{cin}}}{T_{\text{cin}} - T_{\text{cin}}} = 0
\]

\[
\theta_{\text{cin}} = \frac{T_{\text{cin}} - T_{\text{cin}}}{T_{\text{cin}} - T_{\text{cin}}} = \frac{i(i+1)b_i b_i}{i(i+1)b_i b_i}
\]

\[
\alpha = \frac{i(i+1)b_i b_i - i(i+1)b_i b_i}{i(i+1)b_i b_i}
\]

\[
\theta_{\text{cin}} = \frac{T_{\text{cin}} - T_{\text{cin}}}{T_{\text{cin}} - T_{\text{cin}}} = \frac{i(i+1)b_i b_i}{i(i+1)b_i b_i}
\]

\[
\theta_{\text{cin}} = \frac{T_{\text{cin}} - T_{\text{cin}}}{T_{\text{cin}} - T_{\text{cin}}} > 0
\]

\[
\theta_{\text{cin}} = \frac{T_{\text{cin}} - T_{\text{cin}}}{T_{\text{cin}} - T_{\text{cin}}} < 0
\]

\[
\theta_{\text{cin}} = \frac{T_{\text{cin}} - T_{\text{cin}}}{T_{\text{cin}} - T_{\text{cin}}} = \frac{i(i+1)b_i b_i}{i(i+1)b_i b_i}
\]

\[
\text{باینده نسبت نیروما در معادلات (7) نیاز به استفاده از معادلات (8) دارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندارد.}
\]

\[
\text{در معادلات (8) ثابتی خود وجود ندا
جدول ۲ - دماهایی به بعد در جریان گرم و سرد این مطالعه و جدول ۲ از مقاله کریشنا و همکاران [۲۱] در میادینی سر خارجی با سه ارتباط

<table>
<thead>
<tr>
<th>طول موج</th>
<th>مطالعه</th>
<th>مرجع</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>34۵۶۷۸</td>
<td>۰۰۳۲۳۹</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
</tr>
<tr>
<td>۰۱۲۳۴۵</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
</tr>
<tr>
<td>۰۰۷۸۶۵</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
</tr>
</tbody>
</table>

جدول ۳ - دماهایی به بعد خروجی و جریان گرم و سرد کار حاضر و جدول ۳ از مقاله کریشنا و همکاران [۲۱]. مقادیر پارامترها:

<table>
<thead>
<tr>
<th>θ_θ</th>
<th>مطالعه</th>
<th>مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰۳۲۳۹</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
</tr>
<tr>
<td>۰۰۳۲۳۹</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
</tr>
<tr>
<td>۰۰۳۲۳۹</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
</tr>
</tbody>
</table>

جدول ۴ - مقادیر ضریب انتقال گرمایی کننده با NTU

<table>
<thead>
<tr>
<th>NTU</th>
<th>U_1 (w/m² - °C)</th>
<th>U_2 (w/m² - °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۲۰۰۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۳۰۰۰۰۰۰۰۰</td>
<td>۳۰۰۰۰۰۰۰۰</td>
<td>۳۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

جدول ۵ - بررسی توزیع دما و کارایی

<table>
<thead>
<tr>
<th>مقدار</th>
<th>مطالعه</th>
<th>مرجع</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰۳۲۳۹</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
<td></td>
</tr>
<tr>
<td>۰۰۳۲۳۹</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
<td></td>
</tr>
<tr>
<td>۰۰۳۲۳۹</td>
<td>۰۰۸۰۹۱</td>
<td>۰۰۳۲۳۹</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶ - مقدار ضریب انتقال گرمایی

<table>
<thead>
<tr>
<th>NTU</th>
<th>C_1(θ_in, T_{in})</th>
<th>C_1(θ_{in}, T_{in})</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰۰۰۰۰۰</td>
<td>۵۰۰۰۰۰۰۰۰</td>
<td>۵۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۴۰۰۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۳۰۰۰۰۰۰</td>
<td>۳۰۰۰۰۰۰۰۰</td>
<td>۳۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۲۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

کلمات کلیدی: NTU، مقاله، کریشنا، همکاران، دماهایی، X، NTU، C_1، گرمایی، θ_in، T_{in}.
1-5- تاثیر نفوذ گرما از محیط و خواص منفی گرما

تاثیر نفوذ گرما از محیط و خواص منفی گرما بر توزیع دماهه سه جریان و کاراکتر بازده را در سیال‌های سه‌گردان با ارتباط گرما، در شکل‌های ۱ و ۲ مورد بررسی قرار گرفته است. شرط ۱ به عنوان ویژگی بین با منظر مقایسه با سایر شرایط در نظر گرفته شده است. در شرط ۱، از هر دو سطح ارتباط گرما با محیط و خواص منفی سیال صرفم طرح شده است. به عبارت دیگر در شرط ۱، دوازده خارجی سیال‌های منفی داده شده و با انتقال گرما به محیط صرف می‌شود در نظر گرفته شده و خواص سیال در دماهه ورودی، آن به منظور انجام محاسبات لحظه شده است.

نفوذ گرما از محیط به جریان سرد، با در نظر گرفتن خواص ثابت جریان‌ها بر مبنای دما و ورودی آنها، با توجه به شکل ۳ پروفیل دماهه جریان سرد کمی افزاریش داده و تاثیر ناجی بر روی افزاریش پروفیل دماهه جریان گرم و سیال دارد. در شرط ۱، مقدار h=5 برای صرف لحظه شده و این بدان معنی می‌باشد که سیال‌های سیال‌های سرد و گرم در h=25، ۵۰ و ۸۵ W/(m²°C) ناحیه افزاریش داده شده و این توسط ناجی بر روی افزاریش پروفیل دماهه جدا از دیگر ارتباطات گرمی با محیط داشته و همیشه محیط تاثیر بیشتری پروفیل دماهه جدا از دیگر ارتباطات گرمی با محیط داشته و پیوسته جریان سرد که در ارتباط با محیط است. دارد.

جدول ۵- مقادیر بارکاردی و دماهه بعد خروجی سه جریان با شرط

شرط	نفوذ گرما از محیط	h	خواص منفی	\[4\]
شرط ۱	نفوذ گرما از محیط	h=25	خواص منفی	\[4\]
شرط ۱	نفوذ گرما از محیط	h=50	خواص منفی	\[4\]

گام‌های بارکاردی و دماهه بعد خروجی سه جریان با شرط:

\[m_1=0.1, m_2=0.2, m_3=0.3, L_1=0.1, \theta=0.2, K=100, \theta_0=100, T_{in}+2.5, T_{out}+2.5, T_{in}+2.5, T_{out}=24, h=25 \]
٧١

پروپیل دمایی جریان سرد کاهش یافته، پروپیل دمایی جریان گرم آزادش می‌باشد و در نتیجه اختلاف دمایی بین جریان سرد و جریان گرم در این مقطع پروپیل می‌باشد. به گونه‌ای که در شکل ٧ این موارد مشاهده می‌شود، تقاطع شکل ٦ این تقاطعات در پروپیل دمایی موجب افزایش درجه حرارت جریان سرد از ٧٨ متر به ٨٤ متر، هر سرک می‌باشد. این ممکن است با یک منبع که در پیک شکل یافت، کاهش می‌دهد مقادیر کارایی گرم، سرک و میانی برای سه مقادیر مقاومت از فرآیند سرد معادله‌ای شده و نتایج در دو شکل ٦ مشاهده می‌شود. افزایش قطر جریان سرد از ٧٠ متر به ٨٠ متر، کارایی گرم را از ٦١٣ به ٧٠٣، و کارایی سرد را از ٤٨٥ به ٦٧٤، کاهش می‌دهد.

شکل ٥ - تاثیر فنود گرم زنده بر قطعیت دمایی مشابه کن گرمایی
سیر جریان در آراش جریانی نوع ٢ برای دو مقادیر متفاوت، ٣ = ١، ١ = ٠.٠٢، مقادیر سیار بیان‌شده:

\[
\begin{align*}
th_1 &= 1, n_1 = 1, D_1 = 3, L_1 = 10, t_1 = 0.02, K_1 = 100, \\
T_{in,1} &= 2, T_{in,2} = 55, T_{in,3} = 34, T_4 = 24, h_4 = 50
\end{align*}
\]

تأثیر هم‌زمان خواص منتشر سیال و نفوذ گرم آرایش گرم زنده بر پروپیل دمایی هر سرک جریان در شکل ٦ مشاهده می‌شود. اعمال هم‌زمان دو عامل باعث آناتیپ بروز پروپیل دمایی جریان می‌شود. این وابستگی از نظر قطعیت دمایی جریان سرد به سرک و دیگر وابستگی‌ها در دو شکل ٦ مشاهده می‌شود. نتایج حاصل در هر یک از دو شکل ٦ لحاظ می‌شود که هم‌زمان مقادیر سرک به منظور دقت در نظر گرفته شود.

شکل ٧ - تاثیر قطر جریان سرد بر پروپیل دمایی جریانی
سیر گرم و میانی در یک مدل مشابه کن گرمایی سیر جریانی با فرض خواص منتشر سیال و نفوذ گرم زنده بر قطعیت دمایی مشابه کن گرمایی
سیر جریانی نوع ٢ برای دو مقادیر سیار بیان‌شده:

\[
\begin{align*}
m_1 &= l, m_2 = l, m_3 = 1, D_1 = 3, L_1 = 10, t_1 = 0.02, K_1 = 100, \\
T_{in,1} &= 2, T_{in,2} = 55, T_{in,3} = 34, T_4 = 24, h_4 = 50
\end{align*}
\]

جدول ٧ - تاثیر قطر جریان سرد بر کارایی سرک
گرم و میانی در یک مدل مشابه کن گرمایی سیر جریانی با فرض خواص منتشر سیال و نفوذ گرم زنده بر قطعیت دمایی مشابه کن گرمایی سیر جریانی نوع ٢ برای دو مقادیر سیار بیان‌شده:

<table>
<thead>
<tr>
<th>(e_0)</th>
<th>(e_r)</th>
<th>(e_i)</th>
<th>(D_1 (m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>١٠٠٠٥٥</td>
<td>١٠٠٠٥٥</td>
<td>١٠٠٠٥٥</td>
<td>١٠٠٠٥٥</td>
</tr>
<tr>
<td>٩٠٠٠٥٥</td>
<td>٩٠٠٠٥٥</td>
<td>٨٠٠٠٥٥</td>
<td>٨٠٠٠٥٥</td>
</tr>
<tr>
<td>٠٠٠٠٥٥</td>
<td>٠٠٠٠٥٥</td>
<td>٠٠٠٠٥٥</td>
<td>٠٠٠٠٥٥</td>
</tr>
</tbody>
</table>

شکل ٦ - تاثیر خواص منتشر سیال و نفوذ گرم زنده بر پروپیل دمایی برای مدل مشابه کن گرمایی سیر جریانی در آراش جریانی نوع ٢ برای دو مقادیر سیار بیان‌شده:

\[
\begin{align*}
m_1 &= l, m_2 = l, m_3 = 1, D_1 = 3, L_1 = 10, t_1 = 0.02, K_1 = 100, \\
T_{in,1} &= 2, T_{in,2} = 55, T_{in,3} = 34, T_4 = 24, h_4 = 50
\end{align*}
\]

جدول ٨ - تاثیر قطر جریان سرد بر کارایی سرک
گرم و میانی در یک مدل مشابه کن گرمایی سیر جریانی با فرض خواص منتشر سیال و نفوذ گرم زنده بر قطعیت دمایی مشابه کن گرمایی سیر جریانی نوع ٢ برای دو مقادیر سیار بیان‌شده:

\[
\begin{align*}
m_1 &= l, m_2 = l, m_3 = 1, D_1 = 3, L_1 = 10, t_1 = 0.02, K_1 = 100, \\
T_{in,1} &= 2, T_{in,2} = 55, T_{in,3} = 34, T_4 = 24, h_4 = 50
\end{align*}
\]

شکل ٩ - تاثیر قطر لوله جریان سرد، دی‌گر جریانی و دمای محفظت بر توزیع دمای سیال و کارایی
مبنایشک

تأثیر قطر لوله جریان سرد، دی‌گر جریانی و دمای محفظت بر روی توزیع دمای سیال و کارایی سرد، گرم و میانی با در نظر گرفتن خواص منتشر سیال و نفوذ گرم زنده بر جریان سرد از محفظت اطراف، در شکل ٣ از ٢٠ به ٢٥ نشان داده شده است. با افزایش قطر جریان سرد.
تسهیل کردن این مقوله، بر اساس اطلاعات در جدول 13، دماهای جریان‌های سرد

<table>
<thead>
<tr>
<th>ϵι</th>
<th>ϵμ</th>
<th>ϵν</th>
<th>Tι(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>34</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>44</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>54</td>
</tr>
</tbody>
</table>

در این مقاله، پس از استخراج فرمول‌ها، جدول 13 تشکیل می‌شود.

با این حال، توصیه‌های جدول 13 مطالعه‌های تحقیقاتی در این زمینه نیز را می‌تواند در جریان‌ها و

در این مقاله، پس از استخراج فرمول‌ها، جدول 13 تشکیل می‌شود.

با این حال، توصیه‌های جدول 13 مطالعه‌های تحقیقاتی در این زمینه نیز را می‌تواند در جریان‌ها و

در این مقاله، پس از استخراج فرمول‌ها، جدول 13 تشکیل می‌شود.

با این حال، توصیه‌های جدول 13 مطالعه‌های تحقیقاتی در این زمینه نیز را می‌تواند در جریان‌ها و

در این مقاله، پس از استخراج فرمول‌ها، جدول 13 تشکیل می‌شود.