تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,041 |
تعداد دریافت فایل اصل مقاله | 15,213,990 |
بررسی کیفیت آبخوان دشت کاشان با استفاده از تحلیلهای هیدروژئوشیمی | ||
هیدروژئولوژی | ||
مقاله 3، دوره 5، شماره 1، شهریور 1399، صفحه 33-46 اصل مقاله (1.32 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hydro.2020.9497 | ||
نویسنده | ||
زهرا جمشیدزاده* | ||
استادیار گروه عمران آب، دانشکده مهندسی دانشگاه کاشان | ||
چکیده | ||
آبزیرزمینی اصلیترین منبع تأمین آب جهت مصارف مختلف در دشت کاشان است. بنابراین، بررسی و شناسایی عوامل طبیعی و انسانی مؤثر بر کیفیت آن از اهمیت ویژهای برخوردار است. در این تحقیق کیفیت آبزیرزمینی دشت کاشان بر پایه تحلیلهای هیدروژئوشیمی و شاخص اشباع شدگی آب نسبت به کانیهای مختلف مورد بررسی قرار گرفت. نتایج آنالیز شیمیایی پارامترهای کیفی آب در 18 نقطه نمونهبرداری نشان داد که ترتیب غالب کاتیونها در آبخوان کاشان Na+> Ca2+>Mg2+>K+ و آنیونها Cl->SO42-> HCO3- است. تیپ غالب آب در 55% از نقاط نمونهبرداری بر پایه نمودار چودا Na-K-Cl-SO4 شناسایی شد که دلیل آن بالا آمدگی آب شور از لایههای زیرین به دلیل پمپاژ بی رویه در بخش های مرکزی دشت و انحلال شیمیایی سازندهای رسی- نمکی در بخش شرقی دشت بود. در 38% از نمونه ها، تیپ آب Ca-Mg-SO4 یا Ca-Mg-Cl بود که با توجه به ناچیز بودن ژیپس در محدوده مطالعاتی، منشأ آن میتواند کودهای شیمیایی مورد استفاده در اراضی کشاورزی منطقه باشد. با توجه به نتایج محاسبات شاخص اشباع، آبزیرزمینی در محدوده مطالعاتی نسبت به کانیهای کلسیت و دولومیت در حالت فوق اشباع و نسبت به هالیت، ژیپس، انیدرید و سیلویت در حالت تحت اشباع قرار داشت. نتایج نمودارهای ترکیبی بررسی کیفیت آب نشان داد که تبادل یونی و ترسیب شیمیایی کلسیت و دولومیت و انحلال هالیت عامل اصلی کنترل کننده کیفیت آبزیرزمینی در محدوده مطالعاتی است. نسبتهای یونی، تأثیر پدیده تبخیر از سطح آبخوان و انحلال ژیپس بر کیفیت آبزیرزمینی را در منطقه نشان نداد. انحلال کربنات در اثر تبادل یونی معکوس در بخشهای محدودی از منطقه مشاهده شد. | ||
کلیدواژهها | ||
تبادل یونی؛ تحلیل هیدروژئوشیمی؛ دشت کاشان؛ شاخص اشباع؛ نمودار چودا | ||
مراجع | ||
اصغری مقدم، ا.، محبی، ی.، 1395. ارزیابی عوامل مؤثر بر کیفیت شیمیایی آب زیرزمینی دشت کهریز با استفاده از روشهای آماری و هیدروشیمیایی. هیدروژئولوژی، دوره 1، شماره 1، صفحه 92-76. آل بوعلی، ع.، قضاوی، ر.، ساداتی نژاد، س.ج.، 1394. بررسی اثرات خشکسالی بر منابع آب زیرزمینی با استفاده از شاخص SPI (مطالعه موردی: دشت کاشان). اکوسیستم بیابان، دوره 5، شماره 10، صفحه 22-13. حسنزاده، ب.، عباسنژاد، ا.، 1397. فرآیندهای هیدروژئوشیمیایی مؤثر بر کیفیت منابع آب زیرزمینی بخش میانی دشت نوق )غرب استان کرمان(، هیدروژئولوژی، دوره 3، شماره 2، صفحه 46-58. سعیدی رضوی ب.، سلیمانی ر.، 1398. بررسی ویژگیهای هیدروشیمیایی و منشأ یونها با استفاده از نسبتهای یونی و تحلیل عاملی، هیدروژئولوژی، دوره 4، شماره 1، صفحه 110-97. نوینپور، ا.، مسعودی، س.، اصغری مقدم، ا.، 1397. ارزیابی آسیبپذیری آبخوان دشت نازلوچای ارومیه با استفاده از مدل DRASTIC و صحت سنجی آن با غلظت نیترات در محیط GIS، یافتههای نوین زمینشناسی کاربردی، دوره 12، شماره 23، صفحه 103-92. Akouvi, A., Dray M., Violette, S., de Marsily, G., Zuppi, G.M., 2008. The sedimentary coastal basin of Togo: example of a multilayered aquifer still influenced by a palaeo-seawater intrusion. Hydrogeology Journal, 16(3),419–436. Appelo, C.A.J., Postma, D., 2005. Geochemistry, Groundwater and Pollution, 2nd ed.; Balkema: Leiden, The Netherlands. Argamasilla, M., Barberá., J.A., Andreo, B., 2017. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Science of the Total Environment, 580,50–68. Baghvand, A., Nasrabadi, T., Bidhendi, G.N. et al., 2010. Groundwater quality degradation of an aquifer in Iran central desert. Journal of Desalination, 1-12. Barzegar, R., Asghari Moghaddam, A., Tziritis, E., 2017. Hydrogeochemical features of groundwater resources in Tabriz plain, northwest of Iran. Applied Water Sciences, 7(7), 3997-4011. Carol, E., Kruse, E., Mas-Pla, J., 2009. Hydrochemical and isotopical evidence of groundwater salinization processes on the coastal plain of Samborombón Bay, Argentina. Journal of Hydrology, 365(3) Datta, P.S., Tyagi, S.K., 1996. Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. Journal Geological Society of India,47,179-188 Ghabayen, S.M.S., McKee, M., Kemblowski, M., 2006. Ionic and isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer. Journal of Hydrology, 318 (1-4), 360-373 Chadha, D.K., 1999. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7,431-439. Fisher, R.S., Mulican, W.F., 1997. Hydrochemical evolution ofsodium-sulphate and sodium-chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5(2),4-16. Ghzifard, A., Moslehi, A., Safaei, H., Roostaei, M., 2016. Effects of groundwater withdrawal on land subsidence in Kashan Plain, Iran, Bulletin of Engineering Geology and the Environment, 75(3), 1157-1168. Huang, G., Sun, J., Zhang, Y., Chen, Z., Liu, F., 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Science of the Total Environment. 463-464, 209-221. Hounslow, A.W., 1995. Water quality data analysis and interpretation. Lewis Publishers, Boca Raton. Jamshidzadeh, Z., Tavangari Barzi, M., 2018. Groundwater quality assessment using the potability water quality index (PWQI): a case in the Kashan plain, Central Iran. Environmental Earth Sciences, 77(3):59. Jamshidzadeh, Z., Mirbagheri, S.A.,2011. Evaluation of groundwater quantity and quality in the Kashan basin; Central Iran, Desalination, 270(1-3),23-30. Jankowski, J., Acworth, R.I., 1997. Impact of depris-flow deposits on hydrogeochemical processes and the development of dryland salinity in the Yass River catchment, New South Wales, Australia. Hydrogeology Journal, 5(4),71-88. Kattan, Z., 2018. Using hydrochemistry and environmental isotopes in the assessment of groundwater quality in the Euphrates alluvial aquifer, Syria. Environmental Earth Sciences, 77,45. Martinez, D.E., Bocanegra, E.M., 2002. Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeology Journal, 10(3), 393–408. Mirzavand, M., Khoshnevisan, B., Shamshirband, S., Kisi, O., Ahmad, R., Akib, S., 2015. Evaluating Groundwater Level Fluctuation by Support Vector Regression and Neuro-Fuzzy Methods - a Comparative Study. Natural Hazards. DOI 10.1007/s11069-015-1602-4. Moasheri, S.A., Rezapour, O., Beyranvand, Z., Poornoori, Z., 2013. Estimating the spatial distribution of groundwater quality parameters of Kashan plain with integration method of Geostatistics - Artificial Neural Network Optimized by Genetic-Algorithm. International Journal of Agriculture and Crop Sciences IJACS/2013/5-20/2434-2442. Nadiri, A.A., Asghari Moghaddam, A., Tsai, F.T.C., Fijani, E., 2013. Hydrogeochemical analysis for Tasuj plain aquifer, Iran. Journal of Erath System Sciences, 122(4),1091-1105. Nadiri, A.A., Sadeghi Aghdam, F., Khatibi, R., Asghari Moghaddama, A., 2018. The problem of identifying arsenic anomalies in the basin of Sahand dam through risk-based ‘soft modelling’. Science of the Total Environment, 613–614, 693–706. Nadiri, A.A., Sadeghfam, S., Gharekhani, M., Khatibi R., Akbari, E., 2018. Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using ‘risk cells’. Journal of Environmental Management, 217, 654-667. Prasanna, M.V., Chidambaram, S., Shahul Hameed, A., Srinivasamoorthy, K., 2011. Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu, India. Journal of Earth System Sciences 120, 85-98. Tay, C.K., Hayford, E., Hodgson, I.O., Kortatsi, B.K., 2015. Hydrochemical appraisal of groundwater evolution within the Lower Pra Basin, Ghana: a hierarchical cluster analysis (HCA) approach. Environmental Earth Sciences, 73, 3579-3591. Tay, C.K., Kortatsi, B.K., Hayford, E., Hodgson, I.O., 2018. Origin of major dissolved ions in groundwater within the Lower Pra Basin using groundwater geochemistry, source-rock deduction and stable isotopes of 2H and 18O, Environmental Earth Sciences. Vengosh, A., Spivack, A.J., Artzi, Y., Ayalon, A., 1999. Geochemical and boron, strontiumand oxygen isotopic constraints on the origin of the salinity in groundwater fromthe Mediterranean coast of Israel. Water Recourses Research, 35,1877. Westbrook, S.J., Rayner, J.L., Davis, G.B., Clement, T.P., Bjerg, P.L., Fisher, S.J., 2005. Interactionbetween shallow groundwater, saline surface water and contaminant dischargeat a seasonally and tidally forced estuarine boundary. Journal of Hydrology, 302, 255–269. WHO, 2006. Guidelines for Drinking-water Quality. World Health Organization. First addendum to third edition. p.595 Li, X., Wu, H., Qian, H. Gao, Y., 2018. Groundwater Chemistry Regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China, Water, 10, 338. | ||
آمار تعداد مشاهده مقاله: 508 تعداد دریافت فایل اصل مقاله: 348 |