تعیین موقعیت بهینه سیستم مهاربند بازویی درقابهای فولادی بلند با استفاده از الگوریتمهای فراکاوشی

کیوان فرزاد و سعید قلیزاده ۲۰

^۱ دانشجوی دوره دکتری گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه ارومیه ^۲ دانشیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه ارومیه

(دریافت: ۹۸/۲/۳۱، پذیرش: ۹۸/۸/۱۲، نشر آنلاین: ۹۸/۸/۱۲)

چکیدہ

تأمین سختی مناسب و بخصوص سختی جانبی سازه، از پارامترهای اساسی طراحی ساختمانهای بلند است. از جمله سیستمهای مورد اقبال در سازههای بلند، سیستم سازهای با مهار بازویی است. به واسطه اتصال هسته مرکزی به ستونهای محیطی توسط مهارهای بازویی میزان مشارکت اعضا در تحمل نیروهای جانبی افزایش می بد. سازههای با مهار بازویی در چند تراز نسبت به سازههای تک بازویی از مقاومت خمشی بیشتری برخوردارند در این راستا موقعیت سیستمهای سخت کننده، تأثیر بسزایی در بهبود عملکرد و دستیابی به طرحهای اقتصادی خواهد داشت. تعدد الزامات آئین نامهای و اعضای سازه مستلزم بهره گیری از الگوریتمهای فراکاوشی در روند بهینه سازی است در این تحقیق با به کار گیری چهار الگوریتم فراکاوشی بهینه سازی در اعضای سازه مستلزم بهره گیری از الگوریتم های فراکاوشی در روند بهینه سازی است در این تحقیق با به کار گیری چهار الگوریتم فراکاوشی بهینه سازی در دو سازه ۲۴ و مستلزم بهره گیری از الگوریتم های فراکاوشی در روند بهینه سازی است در این تحقیق با به کار گیری چهار الگوریتم فراکاوشی بهینه سازی در دو سازه ۲۴ و مستلزم بهره گیری از الگوریتم های فراکاوشی در روند بهینه سازی است در این تحقیق با به کار گیری چهار الگوریتم فراکاوشی بهینه سازی در دو سازه ۲۴ و ۲۶ طبقه کارایی هر الگوریتم در بهینه سازی سایز و موقعیت مهارهای بازویی مشخص و نتایج به دست آمده حاکی از تأثیر موقعیت بهینه دستیابی به سازه بهینه می باشد به طوری که با تخصیص یک مهار به ازای هر دوازده طبقه و تثبیت یکی از آنها در طبقه آخر هر سازه، موقعیت بهینه مهار دوم سازه ۲۴ طبقه در طبقه دوازدهم و مهارهای سازه ۳۶ طبقه در طبقات یازدهم و بیست و سوم به دست می آید.

كليدواژهها: ساختمان بلند، الگوريتم فراكاوشي، بهينهيابي موقعيت.

۱– مقدمه

با افزایش ارتفاع ساختمان، ملاحظات مربوط به سختی و پایداری سازهای اهمیت افزون تری نسبت به معیار مقاومت که در سازههای کوتاه عامل تعیین کننده و حاکم بر طراحی است مییابد امروزه با توجه به کمبود زمین در شهرهای بزرگ و افزایش روزافزون جمعیت ساختمانهای بلند جایگاه ویژهای پیدا کردهاند (۱۹۹۸، ۲aranath).

هر سازه بلندی اساساً رفتار شبیه به طره عمودی تحت بارهای جانبی از خود نشان میدهد که بهیقین ارزیابی پاسخ آن و تلاش در جهت مقاوم سازی آن نیازمند ابداع ساختارهای سازهای گوناگون است که به حداقل رساندن مقدار مصالح سازهای مورد مصرف از اهداف اصلی آن میباشد.

از جمله سیستمهای مورد اقبال در سازههای بلند، سیستم سازهای با مهار بازویی است این نوع سازه دارای یک هسته مرکزی است که توسط خرپاهای بازو مانند یا شاهتیرهای قوی به ستون-

های خارجی متصل می شوند. تحت بارهای جانبی مهارها با ستون-های پیرامونی در برابر چرخش هسته مقاومت کرده و موجب کاهش تغییر شکل های جانبی و ممان ها می گردند (Wu و همکاران، ۲۰۰۳).

موقعیت مهار بازویی تأثیر بسزایی بر کارایی سازه دارد یک ساختمان می تواند تنها با افزودن مهار بازویی در طبقه فوقانی به طور مؤثری سخت گردد. با افزایش طبقات و تعداد مهارهای بازویی رفتار یکپارچه هسته و ستونهای پیرامونی بهتر تأمین می گردد و سختی جانبی بهبود می یابد اما این بهبود نسبت ثابتی با افزایش سختی جانبی بهبود می یابد اما این بهبود نسبت ثابتی با افزایش بعداد مهارها در ترازهای مختلف ندارد و معمولاً در سازههای بسیار بلند حداکثر تا چهار مهار بازویی استفاده میشود (hth و در اعراحی بوده و عمدتاً بهصورت تجربی صورت گرفته و با توجه به الزامات آئین نامه ای متنوع، نتایج اقتصادی خوبی به همراه ندارد. در خصوص تعیین موقعیت بهینه مهار بازویی مطالعات در خصوص تعیین موقعیت بهینه مهار بازویی مطالعات

^{*} نویسنده مسئول؛ شماره تماس: ۹۱۴۴۴۷۵۰۹۷

آدرس ايميل: k.farzad@iaurmia.ac.ir (ک. فرزاد)، s.gholizadeh@urmia.ac.ir (س. قلىزاده).

کننده بوده است. در سالهای اخیر با ارائه الگوریتمهای فراکاوشی، پیشرفتهای قابل توجهی در زمینه بهینهسازی اتفاق افتاده که عملکرد خوبی در توابع هدف پیچیده داشتهاند این روشها برگرفته از طبیعت بوده و شباهتهایی با سیستمهای اجتماعی و طبیعی دارند. از جمله روشهای فراکاوشی میتوان به بهینهیابی کلونی مورچهها، اجتماع ذرات، انتشار امواج دلفین، تصادم اجسام و گرگ خاکستری اشاره نمود.

در رابطه با تعیین موقعیت بهینه مهارهای بازویی در قابهای فولادی میتوان به تحقیق Jagadheeswari و همکاران (۲۰۱۶). تحت عنوان موقعیت بهینه مهار بازویی در یک سازه ۴۰ طبقه در معرض نیروهای باد و زلزله اشاره کرد که ضمن تأکید بر عملکرد مناسب مهار بازویی در کنترل تغییر مکان کل سازه و دریفت^۱ طبقات موقعیت بهینه در تراز طبقه آخر و وسط ارتفاع پیشنهاد شده است.

در مطالعه Shivacharan و همکاران (۲۰۱۵) موقعیت بهینه مهار تکی در ۲/۳ ارتفاع سازه و در صورت تثبیت مهار اول، مناسب ترین موقعیت برای مهار دوم وسط ارتفاع تعیین شده است. در تحقیق Nanduri و همکاران (۲۰۱۳) تحت عنوان موقعیت

بهینه مهار بازویی، ضمن تأکید بر عدم کارایی مناسب مهار تکی در بالاترین نقطه سازه، تعبیه مهار دوم در وسط ارتفاع توصیه شده است.

در رابطه با بهینه سازی قاب های فولادی می توان به کار Hasancebi و همکاران (۲۰۱۰) تحت عنوان مقایسه تکنیک های مختلف جهت طراحی بهینه سازه های فولادی اشاره کرد. در این تحقیق با استفاده از هفت الگوریتم متفاوت نسبت به طرح بهینه ضمن لحاظ قیود هندسی اقدام شده و نتایج عملکرد الگوریتم و رتبه بندی آن ها مشخص شده است.

مطالعات انجامشده در زمینه تعیین موقعیت بهینه مهار بازویی تاکنون بدون استفاده از الگوریتمهای بهینهسازی صورت گرفته و صرفاً با فرض استقرار مهار بازویی در طبقات از پیش تعیین شده اثرات آن موردبررسی قرار گرفته است. در مطالعه حاضر از الگوریتمهای اجتماع ذرات، انتشار امواج دلفین بهبودیافته، تصادم اجسام و گرگ خاکستری جهت تعیین موقعیت بهینه مهارهای بازویی سازههای فولادی بلند استفاده شده است.

۲- فرمول بندی طراحی بهینه قابهای فولادی

جهت طراحی قابهای فولادی پس از اعمال بارهای ثقلی و جانبی تحت ترکیب بارهای آییننامه انتخابی، آنالیز خطی سازه انجامشده و با استفاده از نتایج تحلیل، قیدهای مربوط به روش طراحی و همچنین قیدهای اجرایی کنترل شده و تابع هدف

محاسبه میشود. در این مطالعه که هدف اصلی بهینهسازی، کاهش وزن سازه میباشد مسئله بهصورت زیر فرمولبندی میشود:

Minimize : $w(x) = \rho \sum_{i=1}^{M} A_i L_i$ (1)

subject to the constraints: $g_1 \leq 0$, $g_2 \leq 0$, ... , $g_n \leq 0$ (Y)

که در آن φ ، A و L به ترتیب وزن واحد حجم فولاد، سطح مقطع عضو و طول عضو می باشند. $g_1, g_2, ..., g_n$ توابع قید هستند که با توجه به نوع المان و نوع مسئله محاسبه می شوند. در این مطالعه انواع قیدها مانند دریفت طبقات، تغییر مکان ماکزیمم تراز بام و ... برای طراحی سازهها اعمال شدهاند.

$$g_{\delta} = \frac{\left(\frac{\delta}{H}\right)}{R} - 1 \le 0 \tag{(7)}$$

$$g_k^d = \frac{\binom{d_k}{h_k}}{R_I} - 1 \le 0 \quad k = 1, \dots, ns$$
 (f)

که در آن δ حداکثر تغییرمکان جانبی سازه، H ارتفاع سازه، R حداکثر دریفت نسبی مجاز بام، d_k دریفت طبقات، h_k ارتفاع R حداکثر دریفت نسبی h_k مقدار مجاز دریفت نسبی طبقه k ام، ns معداد طبقات و R حداکثر مقدار مجاز دریفت نسبی طبقات بوده و برابر ۲۰۱۲ میباشد. همچنین قیود مربوط به تنش در اعضای سازه بر اساس آییننامه AISC-360 (۲۰۱۰) به صورت زیر فرمول بندی می شود:

$$for \quad \frac{P_u}{\phi_c P_n} < 0.2 \quad g_l^{\sigma} = \left[\frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \right] - 1 \le 0 \qquad , l = 1, \dots, ne$$
 (Δ)

$$for \quad \frac{P_u}{\phi_c P_n} \ge 0.2 \quad g_l^{\sigma} = \left[\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right)\right] - 1 \le 0 \qquad , l = 1, \dots, ne$$

$$(\pounds)$$

که در آن P_{u} مقاومت محوری لازم، P_{n} مقاومت محوری مجاز، \emptyset_{c} ضریب کاهش مقاومت، M_{ux} و M_{ux} مقاومت خمشی لازمه، M_{nx} و M_{ny} مقاومت خمشی اسمی عضو، \emptyset_{b} فاکتور کاهش مقاومت خمشی ($0.0 = (\phi_{b})$ و n تعداد اعضاء است. نکته مهم دیگر در طراحی قابهای فولادی در نظر گرفتن قید مربوط به اتصال تیر به ستون جهت ملاحظات اجرایی میباشد که با توجه به شکل (۱) به صورت زیر فرمول بندی می شود:

$$g_m^B = \frac{b_{fb}}{b_{fc}} - 1 \le 0$$
, $m = 1, ..., nj$ (Y)

در این رابطه nj معادل تعداد اتصالات میباشد در نهایت فرمول بندی مسئله مقید بالا با استفاده از روش تابع پنالتی به یک مسئله نامقید تبدیل شده است.

شکل ۱- جزئیات ابعادی اتصال تیر به ستون

$$\begin{split} \varphi(x,r_p) &= w(x) \left\{ 1 + r(\max\{0,g_{\delta}\})^2 + r\sum_{k=1}^{ns} (\max\{0,g_k^d\})^2 + r\sum_{l=1}^{ne} (\max\{0,g_l^\sigma\})^2 + r\sum_{m=1}^{nj} (\max\{0,g_m^B\})^2 \right\} \end{split}$$
(A)

بهترتیب معادل با ضریب پنالتی و تابع شبه هدف میباشند. φ, r

۳- الگوریتمهای بهینهسازی

۲-1- الگوريتم ازدحام ذرات (PSO)

این الگوریتم در سال ۱۹۹۵ توسط Kennedy و Eberhart معرفی شد که از نحوه زندگی پرندگان و ماهیها الهام گرفته شده است. که بهصورت گروهی زندگی کرده و بسیاری از احتیاجات خود، از جمله جستجوی غذا را بهصورت دستهجمعی و با استفاده از خرد جمعی انجام میدهند و با به اشتراک گذاشتن اطلاعات خود موقعیت نزدیک ترین پرنده به غذا را میدانند و موقعیت خود در فضای جستجو را بر مبنای آن اصلاح میکنند (Pennedy).

در این الگوریتم هر جواب معادل یک پرنده در فضای جستجو است که ذره نام دارد و هر ذره دارای یک مقدار شایستگی است بر این اساس هر پرندهای که به منبع غذا نزدیک تر است شایستگی بیشتری دارد. همچنین هر پرنده دارای یک بردار سرعت است که جهت حرکت و میزان سرعت را نشان میدهد و در فرآیند بهینه-سازی هر پرنده جهت خود را براساس تجربه شخصی و تجربه جامعه اصلاح میکند.

 ۱) تعیین سرعت و موقعیت اولیه پرندگان به صورت تصادفی با توجه به محدودیتهای فضای طراحی:

۲) ارزیابی تابع هدف
$$(x_k^i)$$
 با توجه به موقعیتهای مشخص شده
در فضای طراحی
۳) تعیین وضعیت هر پرنده از بابت بهترین موقعیت آن تا تکرار
جاری P_k^i و بهروزرسانی آن
۴) تعیین وضعیت بهترین موقعیت پرنده در کل جامعه تا تکرار
۴) تعیین وضعیت بهترین موقعیت پرنده در کل جامعه تا تکرار
۴) بهنگام نمودن سرعت هر پرنده:
۵) بهنگام نمودن سرعت هر پرنده:
 $v_{k+1}^i = \omega v_k^i + c_1 r_1 \frac{(P_k^i - x_k^i)}{\Delta t} + c_2 r_2 \frac{(P_k^g - x_k^i)}{\Delta t}$, $\Delta t = \frac{1}{k_{max}}$

۶) بەروزرسانى موق**ع**يت ھر پرندە:

$$x_{k+1}^{i} = x_{k}^{i} + v_{k+1}^{i} \cdot \Delta t \tag{11}$$

(۲) تکرار مراحل (۲) تا (۶) تا برقراری معیار همگرایی یا تکمیل تعداد تکرارها در روابط فوق، x_{max}, x_{min} محدوده مجاز فضای طراحی را مشخص مینماید و k_{max} معادل با تعداد تکرار حداکثر میباشد c_1, c_2 پارامترهای اعتماد بوده و در مراجع مختلف (۲۰۰۷) پارامترهای اعتماد بوده و در مراجع مختلف (پارامتر اینرسی است ودر میزان بردار سرعت که در تکرارهای له پارامتر اینرسی است ودر میزان بردار سرعت که در تکرارهای لولیه نیازمند گامهای بزرگ تر و در تکرارهای نهایی گامهای کوچک تری برای رسیدن به بهینه نیاز است تأثیرگذار خواهد بود و به جای یک مقدار ثابت، رابطه خطی کاهشی زیر توصیه شده است.

$$\omega_{k+1} = \omega_{max} - \frac{\omega_{max} - \omega_{min}}{k_{max}} \cdot k \tag{11}$$

مقادیر $\omega_{max}, \omega_{min}$ بهترتیب برابر ۲۰/۴ و ۲/۹ توصیه شده و پارامترهای ۲٫،۲₂, ۲ اعداد تصادفی در بازه [۰،۱] میباشند.

۲-۳- الگوریتم گرگ خاکستری (GWO) ۲

گرگهای خاکستری در بالاترین ردیف چرخه شکار در طبیعت قرار می گیرند. این حیوانات اغلب به تعداد متوسط ۵ تا ۱۲، بهصورت گروهی در طبیعت زیست می کنند (Mirjalili و همکاران، ۲۰۱۴). رهبران گروه شامل یک گرگ نر و یک گرگ ماده هستند که آلفا نامیده می شوند. به طور جالب توجه، گرگ آلفا بایستی دارای قدرت مدیریت بالا نسبت به سایر اعضای گروه باشد و ممکن است قوی ترین گرگ نباشد. دومین رتبه در سلسله مراتب گرگهای خاکستری بتا می باشد. گرگهای بتا تحت امر آلفاها قرار داشته که آنها را در اتخاذ تصمیمات و سایر فعالیتهای گروه یاری می کنند. گرگ بتا بایستی تابع آلفا بوده اما به سایر اعضای گروه با رتبه پایین تر حکمرانی می کند. پایین ترین درتبه در گروه

^{3.} Gray Wolf Algorithm

^{2.} Particle Swarm Algorithm

گرگهای خاکستری امگا میباشد. امگا نقش قربانی را در گروه دارد. اگر گرگی در هیچیک از رتبههای فوق قرار نگیرد عضو وابسته و فرمانبردار گرگهای آلفا و بتا بوده (دلتا) ولی بر روی گرگهای امگا حکمرانی میکنند. دیدبانی، نگهبانی و شکار جزء وظایف این رده از گرگها است. سلسلهمراتب شکار گرگهای خاکستری شامل جستجو، احاطه و حمله میباشد.

٣-٢-١- مدل رياضي الگوريتم

۱) احاطه کردن شکار

گرگهای خاکستری در زمان شکار، طعمه خود را احاطه می-کنند که این رفتار توسط معادله زیر مدلسازی میشود.

$$\vec{D} = \left| \vec{C} \cdot \vec{X_p}(t) - \vec{X}(t) \right| \tag{17}$$

$$\vec{X}(t+1) = \vec{X_p}(t) - \vec{A} \cdot \vec{D} \tag{14}$$

که در آن t نشاندهنده تکرار فعلی، A و C بردارهای ضرایب $\overline{X_p}$ ، ردار مکان طعمه، و X بردار مکان گرگ خاکستری میباشد.

$$\vec{A} = 2\vec{a} \cdot \vec{r_1} - \vec{a} \tag{10}$$

$$\vec{C} = 2\vec{r_2} \tag{19}$$

که در آن مؤلفه \hat{n} به صورت خطی از ۲ تا ۰ با افزایش تکرارهای الگوریتم، کاهش می یابد. همچنین ضرایب $\vec{r_1}$ و $\vec{r_2}$ به صورت تصادفی در بازه [۰،۱] انتخاب می شوند. ۲) شکار

گرگهای خاکستری قادر به شناخت محل طعمه و احاطه نمودن آن هستند. عملیات شکار معمولاً توسط آلفا هدایت می شود در یک فضای جستجو هیچ تصوری از محل نقطه بهینه (شکار) وجود ندارد. در شبیه سازی ریاضی فرض می شود موقعیت های آلفا، بتا و دلتا دارای بهترین پتانسیل برای نقطه بهینه هستند. بنابراین در عملیات بهینه سازی موقعیت سه جواب بهینه، به عنوان بهترین راه حل ذخیره شده و موقعیت سایر نقاط با توجه به این سه جواب از طریق فرمول های ریاضی زیر ارتقاء می یابد.

$$\overrightarrow{D_{\alpha}} = |\overrightarrow{C_{1}} \cdot \overrightarrow{X_{\alpha}} - \vec{X}|, \overrightarrow{D_{\beta}} = |\overrightarrow{C_{2}} \cdot \overrightarrow{X_{\beta}} - \vec{X}|,$$

$$\overrightarrow{D_{\delta}} = |\overrightarrow{C_{3}} \cdot \overrightarrow{X_{\delta}} - \vec{X}|$$

$$(1 \forall)$$

$$\overrightarrow{X_{1}} = \overrightarrow{X_{\alpha}} - \overrightarrow{A_{1}} \cdot \left(\overrightarrow{D_{\alpha}}\right), \overrightarrow{X_{2}} = \overrightarrow{X_{\beta}} - \overrightarrow{A_{2}} \cdot \left(\overrightarrow{D_{\beta}}\right),$$

$$\overrightarrow{X_{3}} = \overrightarrow{X_{\delta}} - \overrightarrow{A_{3}} \cdot \left(\overrightarrow{D_{\delta}}\right)$$

$$(1 \land)$$

$$\vec{X}(t+1) = \frac{\vec{X_1} + \vec{X_2} + \vec{X_3}}{3}$$
(19)

4. Enhanced Colliding Bodies Algorithm

۳) شکار طعمه

گرگهای خاکستری در هنگام متوقف شدن طعمه، با حمله، شکار خود را به اتمام می سانند. جهت مدل سازی ریاضی این عمل می توان مقدار a را کاهش داد. ملاحظه می گردد نوسان \bar{A} توسط a کاهش می یابد. به بیان دیگر \bar{A} یک مقدار تصادفی در بازه [-a,a] می باشد که a از مقدار ۲ تا ۰ در طی مراحل بهینه سازی کاهش می یابد. در واقع زمانی که مقدار \bar{A} در بازه [-1.1] قرار دارد، موقعیت نقطه مرحله بعد می تواند هر نقطه مابین موقعیت فعلی و موقعیت طعمه باشد. با استفاده از روابط فوق، موقعیت مراحل بعدی را با توجه به موقعیتهای آلفا، بتا و دلتا تولید و این روند تا آخرین مرحله تکرار یا همگرایی ادامه خواهد داشت.

۳-۳- الگوريتم برخورد اجسام پيشرفته (ECBO)

مبنای اصلی این الگوریتم بر اساس قوانین حاکم بر برخورد اجسام شامل قانون مومنتم و انرژی بوده که بیانگر معادل بودن میزان اندازه حرکت قبل و بعد از برخورد میباشد (Kaveh و همکاران، ۲۰۱۴).

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \tag{(1)}$$

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1^{\prime^2} + \frac{1}{2}m_2v_2^{\prime^2} + Q$$
(71)

 v_1, v_2 سرعت اجسام قبل از برخورد و v_1', v_2' سرعت اجسام بعد از برخورد، m_1, m_2 جرم اجسام و Q معادل اتلاف انرژی در اثر برخورد میباشد که در سیستمهای غیرالاستیک ایجاد میشود. مدل ریاضی الگوریتم شامل این گامها میباشد:

۱) موقعیتهای اولیه اجسام با توجه به محدودیتهای فضای طراحی به صورت تصادفی ایجاد میشوند.

$$x_i^0 = x_{min} + rand(x_{max} - x_{min}), i = 1, 2, ..., n$$
 (YY)

محدوده مجاز فضای x_{max}^0 مقدار اولیه از جسم *i* ام بوده و x_{max} , x_{min} محدوده مجاز فضای طراحی و rand نیز عدد تصادفی در محدوده [۰،۱] و n تعداد اجسام می باشد.

$$m_k = \frac{\frac{1}{fit(k)}}{\sum_{i=1}^{n} \frac{1}{fit(i)}}$$
, $k = 1, 2, ..., n$ (YY)

fit(i) مقدار تابع هدف به ازای عامل i ام بوده و طبق رابطه، اجسامی با ارزش بالا، جرم بزرگتری خواهند داشت.

۳) با ذخیره تاریخچهای از بهترین اجسام و مقادیر توابع هدف و اجرام مربوطه میتوان عملکرد الگوریتم را بدون افزایش هزینه محاسباتی بهبود بخشید. بدین منظور حافظه برخورد (CM)^۵ جهت ذخیرهسازی تعدادی از بهترین حلها تا این مرحله به کار برده میشود بنابراین در این مرحله بردارهای حل ذخیره شده در CM میشود بنابراین در این مرحله بردارهای حل ذخیره شده در ای به جمعیت موجود اضافه شده و به همان تعداد از حلهای نامتعارف حذف و در نهایت اجسام بر اساس جرم آنها به صورت نزولی مرتب میشوند.

۴) ایجاد گروهها و معیارهای قبل از برخورد با آرایش اجسام با توجه به مقدار تابع هدف به صورت صعودی صورت گرفته و نیمه اول از اجسام تنظیم شده به عنوان گروه اجسام ثابت با سرعت صفر طبقه بندی می شوند.

$$v_i = 0, i = 1, 2, \dots, n/2$$
 (14)

و نیمه دوم به عنوان گروه اجسام متحرک فرض شده که این اجسام به سمت نیمه اول حرکت کرده و اجسامی با تابع هدف بالا از هر گروه با هم برخورد میکنند تغییر موقعیت جسم بیانگر سرعت این اجسام قبل از برخورد است.

$$v_i = x_i - x_{i-n/2}$$
 $i = n/2 + 1, ..., n$ (Ya)

x_i, v_i سرعت و موقعیت جسم i ام در نیمه دوم و x_{i-n/2} موقعیت جفت جسم در نیمه اول است.

۵) معیارهای بعد از برخورد: بعد از برخورد، سرعت اجسام در هر گروه ارزیابی میگردد. سرعت هر جسم در گروه ثابت پس از برخورد برابر خواهد بود با:

$$v'_{i} = \frac{(m_{i+n/2} + \varepsilon m_{i+n/2})v_{i+n/2}}{m_{i} + m_{i+n/2}} , i = 1, 2, \dots, n/2$$
 (79)

که $v'_i, v_{i+n/2}$ بهترتیب معادل با سرعت قبل از برخورد جفت جسم *i* ام در گروه متحرک و سرعت بعد از برخورد جسم *i* ام در گروه ثابت هستند. همچنین سرعت هر جسم در گروه متحرک بعد از برخورد برابر خواهد بود با:

$$v'_{i} = \frac{(m_{i} - \varepsilon m_{i-n/2})v_{i}}{m_{i} + m_{i-n/2}} \quad i = n/2 + 1, \dots, n$$
 (YY)

که v'_i, v_i بهترتیب برابر با سرعت جسم i ام در گروه متحرک قبل و بعد از برخورد میباشند c منریب بازگشت بوده و مقدار آن به صورت خطی از یک تا صفر تغییر میکند.

$$\varepsilon = 1 - \frac{iter}{iter_{max}} \tag{TA}$$

iter شماره تکرار جاری و iter_{max} تعداد کل تکرارها در پروسه بهینهسازی است.

۶) بهروزرسانی اجسام: موقعیت جدید اجسام بر اساس سرعت-های پس از برخورد برای اجسام گروه ثابت از این رابطه بهدست میآید.

$$x_i^{new} = x_i + rand. v_i' \quad i = 1, ..., n/2$$
 (19)

v_i, x_i, x^{new} بهترتیب برابر با موقعیت جدید، موقعیت قدیم و سرعت بعد از برخورد *i* امین جسم گروه ثابت میباشد برای هر جسم گروه متحرک نیز خواهیم داشت:

$$x_i^{new} = x_{i-n/2} + rand. v_i' \quad i = n/2 + 1, \dots, n$$
 (° ·)

*v*_i', x_i^{new} بار با موقعیت جدید و سرعت بعد از برخورد *i* امین جسم گروه متحرک بوده و $x_{i-n/2}$ موقعیت قدیم جسم *i* ام جفت در گروه ثابت است rand نیز یک بردار تصادفی با توزیع یکنواخت در بازه [۱۰۱-] میباشد.

(۲) گذر از بهینه محلی: الگوریتمهای فراکاوشی بایستی قابلیت خروج از دامهایی از جمله قرار گرفتن در بهینههای محلی را داشته باشند در الگوریتم ECBO پارامتری به نام pro در بازه [۰،۱] تعریف شده که تعیینکننده تغییر و یا عدمتغییر یک جزء از هر $rn_i(i = 1,2,...,n)$ با معدار i = 1,2,..., pro با توزیع که به صورت یکنواخت و به صورت تصادفی در بازه [۰،۱] توزیع که به صورت یکنواخت و به صورت تصادفی در بازه [۰،۱] توزیع شده قیاس خواهد شد درصورتی که $rn_i < pro$ باشد یک جزء از جسم i ام به صورت تصادفی انتخاب و مقدار آن طبق رابطه زیر احیاء خواهد شد.

 $x_{ij} = x_{j,min} + rand. (x_{j,max} - x_{j,min}) \ i = 1, 2, ..., n$ (71)

x_{ij} برابر متغیر *j* ام از جسم *i* ام و x_{j,min}, x_{j,max} نیز بهترتیب حد بالا و پایین متغیر *j* ام میباشند این مکانیسم باعث حرکت حداکثری در تمامی فضای جستجو و ایجاد تنوع بیشتری خواهد شد.

۸) پروسه بهینهسازی: بعد از تعداد تکرار مشخص خاتمه یافته و تا زمان رسیدن به تکرار آخر مراحل ۲ تا ۷ تکرار خواهند شد.

٣-٣- الگوريتم انتشار امواج دلفين بهبوديافته (MDE) ً

یک دلفین قادر به تولید صداهایی به فرم کلیک میباشد که فرکانس این صدا بلندتر از صداهای استفاده شده برای ارتباط می-باشد در صورت برخورد این اصوات با اجسام مقداری از انرژی صوتی به دلفین بازگشته و به محض دریافت، دلفین کلیک دیگری تولید می کند زمان مابین ارسال و دریافت دلفین را قادر به ارزیابی فاصله از جسم می کند و اختلاف شدت در سیگنالهای در دو سمت سر دلفین آن را قادر به سنجش جهت هدف می ماید

^{6.} Modified Dolphin Echolocation Algorithm

^{5.} Colliding Memory

بنابراین دلفین ابتدا تمام فضای اطراف خود را برای یافتن شکار جستجو میکند و به محض یافتن آن، دامنه جستجو را به طرف هدف محدود میکند که این دو مرحله مشخصه ذاتی هر الگوریتم فراکاوشی است (Kaveh و همکاران، ۲۰۱۳).

مدل رياضي الگوريتم شامل اين گامها ميباشد:

۱) ایجاد تعداد دلخواه موقعیت برای دلفین (NL) که نهایتاً منجر به تشکیل ماتریس L_{NL+NV} خواهد شد که NV معادل تعداد متغیرها است.

۲) محاسبه PP با توجه به حلقه موردنظر از رابطه:

$$PP(Loop_i) = PP_1 + (1 - PP_i) \frac{Loop_i^{power} - 1}{(LoopsNumber)^{power}}$$
(°T)

(PP(Loop_i) احتمال هر حلقه درنتیجه نهایی PP₁: عامل همگرایی حلقه اول درحالیکه پاسخها به صورت تصادفی انتخاب شدهاند. Loop_i: شماره حلقه جاری power: درجه منحنی

LoopsNumber: تعداد حلقههایی که الگوریتم بایستی به همگرایی برسد.

۳) محاسبه میزان شایستگی هر موقعیت تولیدشده در گام اول به صورتی که بهترین جواب دارای بیشترین مقدار باشد.

۴) محاسبه شایستگی تجمعی با توجه به قانون دلفین برای $k = -R_e$ موقعیت *i* ام، متغیر طراحی *j* ام و R_e تا

 $AF_{(A+K)j} = \frac{1}{R_e} * (R_e - |k|) * Fitness(i) + AF_{(A+K)j}$ (°°)

که در آن $AF_{(A+K)}$ شایستگی تجمعی (A+K) امین عضو ماتریس فضای طراحی است که برای متغیر i ام انتخاب شده است، R_e مقدار شعاع تأثیری است که شایستگی تجمعی مربوط به یک موقعیت، فضای اطراف را تحت تأثیر قرار می دهد پیشنهاد شده که مقدار این شعاع بیش از ۱/۴ اندازه فضای طراحی انتخاب نگردد. Fitness (i) نیز برابر مقدار شایستگی مربوط به موقعیت i می باشد.

برای توزیع هموارتر احتمالات در فضای طراحی یک مقدار کوچک ع به تمامی احتمالات محاسبهشده در گام قبلی به فضای طراحی افزوده می شود (AF = AF + ɛ) این مقدار کم تر از حداقل مقدار شایستگی محاسبه شده در اجتماع، انتخاب می شود.

۵) یافتن بهترین جواب بهدست آمده از بین تمام موقعیتها و نامگذاری آن به عنوان The best location و یافتن موقعیت متغیرهای The best location در فضای طراحی و برابر صفر قرار دادن AF مربوط به آنها.

۶) محاسبه احتمال انتخاب گزینه i برای متغیر j طبق رابطه:

$$P_{ij} = \frac{AF_{ij}}{\sum_{i=1}^{LAj} AF_{ij}} \tag{(Tf)}$$

 ۷) اختصاص مقدار احتمال برابر PP به تمامی گزینههای مربوط به متغیرهای The best location و اختصاص مقدار باقی-مانده احتمال به سایر گزینههای فضای طراحی:

$$P_{ij} = (1 - PP) * P_{ij} \tag{73}$$

۸) محاسبه موقعیت گام بعدی با توجه به احتمالات محاسبه شده

۹) تکرار مراحل ۲ تا ۸ به تعداد حلقه انتخاب شده برای مسئله موردنظر در جهت بهبود الگوریتم دلفین برای محاسبه شایستگی تجمعی به جای تابع خطی استفاده شده در الگوریتم استاندارد (مرحله ۴) از رابطه درجه دو (ربع دایره) استفاده می شود که یک توزیع هموارتر و منطقی احتمال را در بر دارد و به وسیله آن می-توان با انتخاب R_e بزرگتر فضای بیشتری از فضای طراحی را تحت پوشش قرار داد (Gholizadeh و همکاران، ۲۰۱۵).

 $AF_{(A+K)j} = (R_e - \sqrt{R_e^2 - (|k| - R_e)^2}) * Fitness(i) + AF_{(A+K)j}$ (٣۶)

از طرفی انتخاب مقدار au نحوه جستجو در فضای طراحی را بهشدت تحت تأثیر قرار میدهد و در رابطه ارائهشده برای AF حداکثر مقدار آن $fitness * R_e$ در موقعیت مربوطه میباشد.

۴- سازههای مورد بررسی و مدلسازی

سازههای موردبررسی در این مطالعه قابهای ۵ دهانهٔ ۲۴ طبقه (۳۲۸ عضوی) و ۳۶ طبقه (۴۹۲ عضوی) می باشند که در آنها طول دهانهها بهصورت مساوی برابر ۱۵ft، ارتفاع طبقه همکف برابر ۱۵ft و باقی طبقات ۱۲ft می باشد. گروه بندی اعضای این سازهها به این صورت انجام می شود که ستون های کناری و داخلی در دو گروه مختلف در سه طبقه متوالی قرار می گیرند. گروهبندی تیرها و بادبندها در دهانههای مختلف مانند ستونها در سه طبقه متوالى انجام مى گيرد. مقطع اعضا از ليست مقاطع استاندارد W section انتخاب می شوند (شکل (۲)). تنش تسلیم المانهای سازه برابر Fy = ۳۶Ksi و مدول الاستیسیته برای اعضا فولادی برابر E=۲۹۰۰۰Ksi در نظر گرفته شده است. همچنین مقادیر بار مرده و زنده در طبقات بهترتیب ۱۰۰*lb/ft*² و فرض ۲۵ lb/ft^2 لحاظ شده و در پشتبام بار زنده $\delta \cdot lb/ft^2$ فرض شده و فاصله قابها در جهت عرضی ۱۵ft در نظر گرفته شده است. بنابراین بار مرده وارد بر تیرهای طبقات ۱۵۰۰*lb/ft*و بار زنده وارد برتیرهای طبقات ۲۵۰*lb/ft* و در پشتبام ۳۷۵*lb/ft* خواهد بود. نیروی زلزله وارد بر قابها بر اساس ضوابط آئیننامه ASCE/SEI-7 (۲۰۱۶) مطابق جدول (۱) محاسبه و اعمال شدهاند.

48 48 48 46 46 47 46 45 44 44 44 44 44 41 42 43 42 44	48 48 45 46 46 47 44 44 41 42 40 40 37 38	\geq	\geq	\geq	\geq	\geq
	44 44 41 42 43 42 41 40 30 30 30 30 37	45	48	47	48	45
41 42 43 42 41	41 42 43 42 41 40 30 40 30 30 37 38 39 36 37		44	\ge	44	
	40 40 37 38 39 36 37	41	42	43	42	41
		33	36	35	36	33

37	38		38	37	
		\geq			
	36	\geq	36		
33	34	35	34	33	
$>\!$	\geq	\geq	\geq	\geq	
	32	\geq	32		
29	30		30	29	
		\geq			8.01m)
	28	\geq	28		20 ft(12
25	26	27	26	25	36m)=4
		\geq			12 ft(3.)
	24	\geq	24		35x
21	22	23	22	21	
		$\geq \leq$			
	20	\geq	20		
17	18		18	17	
\geq	\geq	\geq	$\geq \leq$	$\geq \leq$	
	16	\geq	16		
13	14		14	13	
		\geq			
	12	\geq	12		
9	10		10	9	
		\ge			
	8		8		
5	6	>	6	5	
		>			
	4		4		ĩ
1	2		2	1	15 A(4.57

\supset	\supset	\geq	$>\!$	\geq	
	32	\geq	32		
29	30	31	30	29	
		\sim			
	28	\sim	28		
25	26	27	26	25	
		\sim			
	24	\leq	24		(m2
21	22	23	24	21	£/84.1
		\leq			m)=276
<u> </u>					A /3.66
12	20	19	20	17	23w12
		>			
	$ \frown $	>	\frown		
	16		16		
13	14		14	13	
		\geq			
	12	\geq	12		
9	10		10	9	
		\geq			
	8	\geq	8		
5	6		6	5	
		\geq			
	4	\sim	4		
1	2	3	2	1	Mill Clark
ļ		t(4.57m)=75 ft(22)		L	

شکل ۲- مشخصات و گروهبندی اعضای سازههای مورد بررسی

در این مطالعه برای مدلسازی اجزای محدود سازهها از نرم-افزار کدباز Open Sees (۲۰۱۶) و برای پیادهسازی الگوریتمهای بهینهسازی و همچنین سایر محاسبات لازمه از نرمافزار Matlab بهینهسازی و همچنین سایر محاسبات لازمه از نرمافزار (۲۰۱۵ بهینهسازی از المان الاستیک Column Beam Elastic استفاده شده است.

قاب ۳۶ طبقه (كيلوپوند) قاب ۲۴ طبقه (کیلوپوند) طبقه ./. ٣٣۶ ./.141 ۱ ٠/١٠٩١ •/٢٧٢٧ ۲ ۰/۵۶۹۰ ۰/۲۲۷۸ ٣ ·/ ٣٨٩۵ ./9771 ۴ ./0944 ۱/۴۸۵۰ ۵ 7/1.49 ·/1474 ۶ 1/1888 ۲/۸۳۲۰ γ 1/4879 36881 ٨ 1/1407 4/81. ٩ 7/7829 0/99.9 ۱۰ ۱۱ 7/7797 ۶/۸۱۹۰ 37/2280 ٨/•٨۵٢ ۱۲ 3/1786 9/4091 ۱۳ 4/3798 1./94. 14 ۵/۰۱۵۸ ۱۲/۵۳۰ ۱۵ ۱۶ ۵/۵۹۵۲ 14/221 8/4181 18/088 ۱۷ ٧/١٨٣٢ 17/940 ۱۸ ٧/٩٩٢ 19/980 ۱٩ ٨/٨۴۴٢ ۲۲/۰ ۹۳۸ ٢٠ 9/7897 24/2291 ۲١ 26/6720 1./844 ٢٢ 11/8018 19/170. ٢٣ 19/974. 17/8188 ۲۴ ۱۳/۷۵۰۸ ۲۵ -14/1814 78 -18/0105 _ ۲۷ 17/5155 ۲۸ -11/4014 ٢٩ _ ۱٩/٧٣۵٨ ۳. -11/0914 ۳١ -22/6218 ۳۲ -23/1468 ٣٣ -۲۵/۳۰۰۲ ٣۴ _ 78/1998 ۳۵ -78/1817 ۳۶ -طبقەبندى زمين منطقە: (D) سطح خطر: ۱۰٪ در ۵۰ سال ضريب رفتار: R=7

ضریب بزرگنمایی تغییر شکل: Cd=5.5

جدول ۱- نیروهای زلزله در تراز طبقات نیروی زلزله

۵– بررسی سازهها

۵-۱- متغیرهای طراحی

علاوه بر متغیر بودن مقاطع مورداستفاده در جهت دستیابی به سازه بهینه، موقعیت استقرار مهار بازویی نیز قابل تغییر میباشد. در هر دو سازه یکی از مهارهای بازویی در طبقه آخر ثابت بوده و در سازه ۲۴ طبقه، مهار دوم مابین طبقات بالا و پایین طبقه دوازدهم قابلیت جابهجایی دارد در سازه ۳۶ طبقه نیز مهارهای دوم و سوم بهترتیب در بالا و پایین طبقه دوازدهم و بیست و چهارم امکان جابهجایی جهت دستیابی به جواب بهینه را دارند.

۵-۲- قاب ۲۴ طبقه

نتایج بهینهسازی با استفاده از الگوریتمهای چهارگانه در جدول (۲) درج شده است که پس از انجام تکرارهای کافی بر اساس شرایط و قیود تعریف شده، موقعیت بهینه مهار بازویی طبقه دوازدهم تعیین و الگوریتم MDE کمترین وزن سازه را بهدست میدهد در شکل (۳) نحوه همگرایی الگوریتمها و در شکل (۴) ميزان دريفت طبقات ارائه شده است سرعت همگرايي الگوريتم MDE بیشتر از بقیه الگوریتمها بوده و قید دریفت از جمله قیدهای فعال على الخصوص در طبقات فوقاني در روند بهينه سازي است و تعبیه مهار بازویی در میانه سازه موجب کاهش سریع دریفت و ایجاد بازه کافی جهت توسعه مجدد آن شده است. بررسی نسبت تنشهای المانهای سازهای حاکی از عملکرد مناسب الگوریتم MDE در روند بهینهسازی با توجه به نزدیک بودن مقادیر این نسبتها به نسبتهای مرزی و ماکزیمم علی الخصوص در ستون-های طبقات پایین تر می باشد (شکل (۵)). در جدول (۳) مقاطع مربوط به سازه بهینه حاصل از الگوریتمهای چهارگانه درج شده است.

شکل ۳- روند همگرایی الگوریتمها در سازه ۲۴ طبقه

سازه	در	ستونها	وه از	هر گر	در ه	يمم	ماكز	تنش	نسبت	-۵	شكل
				đ	لمبق	• 24					

بهار بازویی تحت	ت بهينه ه	و موقعيد	- وزن سازه	جدول ۲-

طبقا	17	سازه	کانه در	چهار	وريتمهاى	ت با الک	متفاوه	خرارهای	د

طبقه	طبقه	طبقه	طبقه	طبقه	موقعيت	
چهاردهم	سيزدهم	دوازدهم	يازدهم	دهم	مهار بازويى	
		بلوپوند)	وزن سازه (ک			
***		۳۲۸/۳۴	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22/622	-	
119/19		WY1/YY	101/11	۳۸۸/۸۵	PSO	
TT1/17		346/18	17/1	۳۳٩/۲۸		
119/59		TTD/DV	111/1	۳۵۶/۰۸		
		841/48				
		۳۵٠/۷۲				
۳۳۸/۹۱		34.181				
	361/20	340/10	111/19	°°\/VX	GWO	الگو
		۳۵٩/۳۱	174/21			يع ت
		۳۳۷/۶۹				
		۳۳۱/۹۶				
		2777/28				
		898/·F				
291/18	w c/c/	۲۸۵/۳۶	274/60	291/42		
۳۱۰/۹۵	7.9/94	۲۸۰/۷۸	31.1/20	MDE ۲۹۳/۱۴	MDE	
		T9T/AV				
		779/98				
			4.0/22		ECBO	

جدول ۳- طراحی بهینه سازه ۲۴ طبقه بهدست آمده با

	الگوريتمهاي چهارگانه									
MDE	ECBO	GWO	PSO	الگوريتم						
طبقه دوازدهم	طبقه دوازدهم	طبقه دوازدهم	طبقه دوازدهم	موقعیت مفاریا: ویر						
	W	مقاطع		گروہبندی اعضاء						
W۱۲X۶۵	W17X17.	WI·XIIT	W۱۲x۶۵	1						
W۲۴X۷۶	W14X1.9	WYYX9۴	WYYXX۴	٢						
W۱۰X۴۵	Ψλχγγ	WIFXYF	W17X1.8	٣						
WIFXTF	WIFXTA	W۱۰X۴۵	WIFXTF	۴						
WFFXTFT	W۲۴X۳۰۶	W۲۴X۳۰۶	W۳۶X۲۸۲	۵						
W۳۶X۱۵۰	WITX19.	W4.X19V	WYYX149	۶						
W۱۰X۳۹	WYYXXf	WITXOT	Wιτχω·	٧						
W۲۴X۷۶	WIFXFA	W19X4.	Wιλχ۳۵	٨						
Wιγχωλ	WTFX9F	W19X1	W٣·X٩·	٩						
WIFXYF	WIFXITT	WIFXYF	WYYXXF	۱.						
W۱۰X۵۴	WYIXFY	W۱۰X۶۰	W17X1.8	11						
WYIXFA	Wιλχδδ	Wrfxaa	WYFXAF	١٢						
W۳·X۱۹۱	WffXT9.	W44X1T.	WF·X199	١٣						
W4+X149	WYYXYIY	WTTXIFI	WrfX1ra	14						
Waxy4	W۱۸X۶۰	Waxya	WAX۳۱	۱۵						
WIFXTF	Wtfx۶λ	W19XT1	W19X71	18						
Wιγχωλ	WIFXTAT	WI·XYY	W۲۴X۶λ	١٢						
WYYXXf	WIAXII9	W۱۸X۸۶	WYYXXY	١٨						
Waxe.	WI·XI··	W17X1.8	W17X1.8	١٩						
WYIXFA	WIFXFD	WYIXFA	W۱۶X۵۰	۲.						
WIFXIA9	W۳۶X۲۴۷	W۳·X۱۹۱	WF·X199	17						
WrfX1ra	WTTXIAT	WTTXIAT	WF·XIAT	77						
W۵X۱۹	Wγγχ۹۴	W۱۰X۳۳	WIFXFT	۲۳						
W19X71	W۱۰X۵۴	WYIXFA	W19X89	74						
W۱۲X۶۵	WIFXIA9	W14X1.1	WtfX۶λ	۲۵						
W۳·X٩·	W1.X1	WITXYT	Wr·Xirt	78						
W۶Xλ/۵	WITXTT	WfX1r	WI·XTT	77						
W۱۸X۳۵	W19X71	WIFXTA	W19X79	۲۸						
W74X149	WT•X781	W4.X111	WITXIAT	۲۹						
Wr.X114	WW·XIV	WTTX101	WTYX149	۳۱						
W۶Xλ/۵	W1.X17	W۶Xλ/۵	W۶Xλ/۵	۳۱						
W۱۸X۳۵	W19X89	WIFXFT	WIFXTF	٣٢						
۲۷۸/۳۶	4/08	879/48	TTX/TF	وزن سازه (کیلوپوند)						

۵-۳- قاب ۳۶ طبقه

نتایج بهینهسازی با استفاده از الگوریتمهای چهارگانه در جدول (۴) درج شده است که پس از انجام تکرارهای کافی بر اساس شرایط و قیود تعریف شده، موقعیت بهینه مهار بازویی در طبقات یازدهم و بیست و سوم تعیین و الگوریتم MDE کمترین وزن سازه را بهدست میدهد در شکل (۶) نحوه همگرایی الگوریتم-ها و در شکل (۷) میزان دریفت طبقات ارائه شده است سرعت همگرایی الگوریتم MDE بیشتر از بقیه الگوریتمها بوده و با مقایسه توزیع دریفت و نسبت تنش در ستونها (شکل (۸))، ملاحظه می-گردد که در طبقات پایین دریفت با مقادیر مجاز فاصله داشته و قید نسبت تنش در المانها علیالخصوص ستونها حاکم بوده و مهاربند بازویی اول به پایین تر از طبقه دوازدهم سوق یافته است. بررسی نسبت تنشهای المانهای سازهای حاکی از عملکرد مناسب الگوریتم MDE در روند بهینهسازی با توجه به نزدیک بودن

مقادیر این نسبت به نسبتهای مرزی در اکثر گروهها میباشد. در جدول (۵) مقاطع مربوط به سازه بهینه حاصل از الگوریتمهای چهارگانه درج شده است.

جدول ۴- وزن سازه و موقعیت بهینه مهار بازویی تحت

۳ طبقه	ر سازه ۶	هار گانه در	نمهای چم	با الگورين	متفاوت	رارهای	تكر
طبقه	طبقه	طبقه	طبقه	طبقه	طبقه	قعيت	مو
۱۴ و ۲۶	۱۲ و ۲۲	۱۲ و ۲۴	۱۱ و ۲۳	۱۱ و ۲۲	۱۰ و ۲۲	اىبازويى	مهاره
وزن سازه (کیلوپوند)							
914/94		980/88	9			-	
۹.۸۰/۷۸		1.40/81			1171/1	11Y1/1 PSO	
1.41/28		۱ • ۲۵/۸۵	1111/0/201				
		٨٠٠/۴٧	V97/V7				
		٨.۴/۴٧	۸۲۰/۴۱			5	
		111/54	۸۳۳/۵۶	۵۳۷/۵۳		GWO	گورئ
		٨٩٧/۴۵	እ ۶ ٣/۳				.۶
		۸۸۱/۲۶	λ• γ/٣٢				
		8.5/28					
	۶۰۳/۷۸	810/08	Δλγ/γγ	594/84	8.4/11	MDE	
		۶۳۱/۱					
		۲۸۰/۰۲	YYY/87			ECBO	

شکل ۶- روند همگرایی الگوریتمها در سازه ۳۶ طبقه

شکل ۷- تغییرات دریفت در سازه ۳۶ طبقه

مدہ با	بەدست ا	طبقه	38	سازه	بهينه	حى	ا- طرا	ل ۵	جدوا
--------	---------	------	----	------	-------	----	--------	-----	------

MDE	ECBO	GWO	PSO	الگوريتم
طبقه	طبقه	طبقه	طبقه	موقعیت مهارهای
۱۱ و ۲۳	۱۱ و ۲۳	۱۱ و ۲۳	۱۱ و ۲۳	بازويى
	طع W	مقاه		گروہبندی اعضاء
W 19XYY	WYIXIYY	WT·XIVT	WIFXTOY	١
W I AXYS	WI·XYY	W1AX1+9	WYYXAF	٢
WITXYT	W14X99	WITXYT	WIFXYF	٣
W۲۴X۶λ	WYIX9٣	WIFX۵۳	WIFXTII	k
W14X711	W14X711	WTFXATA	WYVXYYS	۵
WF·XTTO	Wr·Xrar	WTTXTAF	W44X18.	۶
WTIXFT	W٣٠X٩٠	WITXYT	WIFXYF	Ŷ
WYFXYS	WYIXIII	WYFXAF	WYFXAF	٨
WIFXFA	WY1X199	WYYXYAI	W17X1.6	٩
W٣٠X٩٠	W14X1.4	WTIX9٣	WYFXITI	۱٠
WYFX۶λ	WYIXAT	W) \cdot XPA	WIFXYF	11
WYFX۶λ	WIFXOT	WιλX۵·	WYIXFA	١٢
WFFXTPT	W۳۶X۳۰۲	Wf·XTYT	W79X441	١٣
W۴·X۲۱۵	Wf•X79f	Wγγχγωλ	Wf·Xtay	١۴
Wιτχωτ	$W_{1} \cdot X_{\mathcal{F}}$	WIFXYF	WIFXYF	۱۵
W19X79	WYFXAF	W۱۸XΥ۱	WYFXAF	18
W۲۴X۷۶	W۱۶Χγγ	WTIXIII	W14X81	١٧
WITXY9	W14X17.	WT•X119	W74X1.4	١٨
W۸X۴۰	WITXYT	WTFXFT	WIFXYF	١٩
WYFXYF	WIFXYF	W i a XFD	W۲۴X۶λ	۲۰
W۳۶X۲۴۷	WTTXTII	W۳∙X۳۹۱	W14X990	۲۱
WT•X711	Wr•X711	WTTXTFI	W۴·X۲۱۵	٢٢
WITXTP	W۱۲X۵۰	WλX۴λ	WIFXYF	۲۳
W۲۴X۶λ	WYFXAF	W۲۴X۶λ	W۱۸Χ۵۵	۲۴
W۲۴X۷۶	WTTX1F1	W14X187	W۴·X۳۹γ	۲۵
Wyaxf	W74X149	WT4X197	W۴·X۲۳۵	78
W19X9Y	WIFXAT	W) \cdot XFA	WIFXYF	۲۷
Wr1X9λ	W۲۴X۶λ	W ۱۶X۶γ	W14X711	۲۸
WFFXTFT	Wγγχγδλ	W۲۷X۵۳۹	W۳۶XTλT	۲۹
W۴۰X۲۳۵	Wγγχγ·γ	WTTXTIA	Wτvx۳۳۶	۳۰
Wax9y	Wιγχλγ	WITXYT	WIFXYF	۳۱
WIFXTT	WITXOT	WIFXFA	W19X89	٣٢
Wyaxf	WTTX1F1	WIFXYF	WY4X9λ	٣٣
Wτγχηγ	WITXIAT	W14X149	Wy i Xyľ	٣۴
WITX19	WAXTA	W11X19	WITXIF	۳۵
W۲۴X۶λ	WTFXVP	WIFXAT	W19X89	۳۶
WTTXTFI	WF+X79F	$Wf \cdot XTf9$	W14X880	۳۷
WF+X710	W۳۶XTAT	WτvX	WFFXTFT	۳۸
WAX1+	WTYXAF	W۱·X۳·	WIFXYF	٣٩
WTFXV۶	WYIX9٣	WIFXFA	W14X111	۴.
WIFXFA	WT1XT+1	W14X1.9	WF+X897	41
WYYXX۴	W14X1.m	W۱۶χγγ	W۲۴Xλ۴	47
W۶X۲۵	W) \cdot X9A	W17X18	WIFXYF	۴۳
W19X79	W) \cdot X9A	W۱۶X۵۰	WIFXTII	44
WFFXTFT	W۳۶XTAT	W4.X4W1	W44X17.	۴۵
W44X1T.	WIFXTTT	Wf·Xtax	W44X17.	48
Waxya	WAXTI	W1.Xrr	W۶Xλ/۵	۴۷
Wrfxaa	W۱۲X۵۰	W۱۰X۵۴	WITXTT	۴۸
۵۸۷/۲۷	VVT/94	V97/V7	۹۰۰/۰۶	وزن سازه (کیلوپوند)

شکل ۸- نسبت تنش ماکزیمم در هر گروه از ستونها در سازه ۳۶ طبقه

۶- نتايج

در این مطالعه از الگوریتمهای اجتماع ذرات، انتشار امواج دلفین بهبودیافته، تصادم اجسام و گرگ خاکستری جهت تعیین موقعیت بهینه مهارهای بازویی سازههای فولادی بلند استفاده گردید که نتایج حاکی از عملکرد مناسب الگوریتم امواج دلفین در مقایسه با سه الگوریتم دیگر بوده و همچنین اهمیت محل استقرار مهار بازویی بر روند دستیابی به سازه بهینه روشن گردید. بهنحوی-که در صورت تثبیت یک مهار در طبقه آخر در سازه ۲۴ طبقه، موقعیت بهینه در میانه سازه و در سازه ۳۶ طبقه مهارهای بازویی در طبقات پایین تر از ثلث سازه قرار می گیرند که می تواند ناشی از تعدد مهارها و افزایش نسبت تنش در المانهای طبقات پایینتر سازه ۳۶ طبقه باشد. می توان اظهار داشت در طبقات پایین، تنش المانها و در طبقات فوقانی دریفت طبقات عوامل کنترل کننده طرح می باشند. در جهت تکمیل مطالعات، بهینه سازی بر اساس عملكرد و لحاظ رفتار غيرخطي سازه در جهت بهبود رفتار لرزهاي، استفاده از مقاطع فشرده لرزهای و تکمیل قیود اجرایی ضروری بەنظر مىرسىد.

۷- مراجع

- ANSI/AISC 360-10, "Specification for structural steel buildings", Chicago, Illinois 60601-1802: American Institute of Steel Construction, June 22, 2010.
- ASCE/SEI 7-16, "Minimum design loads for buildings and other structures", American Society of Civil Engineers, 2016.
- Gholizadeh S, Poorhoseini H, "Optimum design of frame structures by a modified dolphin echolocation algorithm", Structural Engineering and Mechanics, 2015, 55, 535-554.
- Hasancebi O, Carbas S, Dogan E, Erdal F, Saka MP, "Copmparsion of non-deterministic search techniques in the optimum design of real size steel

frames", Computer and Structures, 2010, 88, 1033-1048.

- Jagadheeswari AS, Christy CF, "Optimum position of multi outrigger belt truss in tall buildings 105 ubjected to earthquake and wind load", International Journal of Earth Sciences and Engineering, 2016, 9, 373-377.
- Kaveh A, Ghazaan M, "Enhanced colliding bodies optimization for design problems with continuous and discrete variables", Advances in Engineering Software, 2014, 77, 66-75.
- Kaveh A, Farhoudi N, "A New optimization method: dolphin echolocation", Advances in Engineering Software, 2013, 59, 53-70.
- Kennedy J, Eberhart R, "Particle swarm optimization", IEEE Int Conf Neural Networks 1995, 4, 1942-1948.
- MATLAB, "The language of technical computing", Math Works Incorporated, 2015.
- Mirjalili S, Mirjalili SM, Lewis A, "Grey wolf optimizer", Advances in Engineering Software, 2014, 69, 46-61.
- Nanduri RK, Suresh B, Hussain I, "Optimum position of outrigger system for high-rise reinforced concrete buildings under wind and earthquake loadings", American Journal of Engineering Research, 2013, 2, 76-89.
- OpenSees, "Open system for earthquake engineering simulation", Pacific Earthquake Engineering Research Center, 2016.
- Perez RE, Behdinan K, "Particle swarm approach for structural design optimization", Computers & Structures 2007, 1579-1588.
- Shivacharan K, Chandrakala S, Karthik NM, "Optimum position of outrigger system for tall vertical irregularity structures", Journal of Mechanical and Civil Engineering, 2015, 12, 54-63.
- Smith BS, Coull A, "Tall building structures: analysis and design", John Wiley & Sons, 1991
- Taranath BS, "Structural analysis & design of tall buildings", McGraw-Hill (1998), USA
- Wu JR, LI QS, "Structural performance of multioutrigger-braced tall buildings", Struct Design Tall Spec Build 2003, 12, 155-176.

EXTENDED ABSTRACT

Layout Optimization of Outrigger Braced System in Steel Tall Structures Using Meta- Heuristic Algorithms

Keyvan Farzad, Saeed Gholizadeh *

Department of Civil Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

Received: 22 May 2019; Accepted: 04 November 2019

Keywords:

Tall building, Meta-heuristic algorithm, Layout optimization.

1. Introduction

As the height of building increases, requirements of structural stiffness and stability become more important than the strength criterion. Each tall structure basically behaves like a vertical cantilever under lateral loads and the outrigger-braced system is a favorable system in tall structures (Taranath, 1998). This type of structure has a central core connected to outer columns by outrigger trusses or strong girders. The position of outrigger-braced system has a significant impact on the structural efficiency. Therefore, determining the position of outrigger braces is an important part of design process; it is mainly done experimentally and does not lead to good economic results. In this study, the particle swarm optimization (PSO), modified dolphin echolocation (MDE), Enhanced colliding bodies optimization (ECBO) and grey wolf optimization (GWO) algorithms are utilized to determine the optimum position of outrigger-braced systems in tall steel structures.

2. Methodology

In this study that the optimization is mainly aimed to reduce the structural weight and the constraint functions calculated in accordance with the type of element and problem, including stress, max displacement, drift and construction constraints. The investigated structures are 5-bay 24-story (328-member) and 36-story (492-member) frames in which the bays are 15ft in length, the ground floor is 15ft in height and floors are 12ft in height. The seismic load on the frames is calculated and applied according to the ASCE/SEI-7 (2016).

OpenSees (2016) open-source software is employed for finite element modeling of the structures and Matlab (2015) software is used to implement optimization algorithms and other necessary computations.

In the both structures, an outrigger brace is fixed on the top floor. In the 24-story structure, the second brace can be moved between the upper and lower stories of the 12th floor. In the 36-story structure, the second and third braces can be moved between the upper and lower stories of the 12th floor and 24th floor, respectively, to achieve the optimum solution.

3. Results and discussion

The optimization results obtained by the algorithms for 24-story frame indicate that the optimum position of outrigger-braced system is determined on the 12th floor and the best structural weight is obtained by MDE algorithm. Fig. 1. shows the convergence curves of the algorithms and the inter-story drift profiles of the optimum structures found by the algorithms. It is clear that the convergence rate for the MDE algorithm is better than that of the other algorithms and the drift constraint is an active constraint in the optimization process, especially at the top stories.

* Corresponding Author

E-mail addresses: k.farzad@iaurmia.ac.ir (Keyvan Farzad), s.gholizadeh@urmia.ac.ir (Saeed Gholizadeh).

In the case of 36-story frame, the results of optimization demonstrate that the optimum position of outrigger-braced system is on the 11th and 23th floors and the best design is obtained by the MDE algorithm. The convergence rate of algorithms and the inter-story drift profiles of the optimum structures found by the algorithms are depicted in Fig. 2. It can be observed that the MDE has the best convergence rate among all the algorithms. In addition, the comparison of the inter-story drifts and the stress ratios of columns indicate that for the best design obtained by MDE the stress ratio constraints of columns dominate the optimal design.

Fig. 1. 24-story frame: a) Convergence histories, b) Inter-story drift profiles

Fig. 2. 36-story frame: a) Convergence histories, b) Inter-story drift profiles

4. Conclusions

Results of this study demonstrate the proper performance of MDE algorithm in comparison with the other three metaheuristics and reveal the importance of position of outrigger-braced system in achieving the optimum structures. It is necessary to conduct an optimization process based on the seismic performance and considering nonlinear behavior of structures to obtain more realistic designs.

5. References

ASCE/SEI 7-16, "Minimum design loads for buildings and other structures", American Society of Civil Engineers, 2016.

MATLAB, "The language of technical computing", Math Works Incorporated, 2015.

Open Sees, "Open system for earthquake engineering simulation", Pacific Earthquake Engineering Research Center, 2016.

Taranath BS, "Structural analysis & design of tall buildings", McGraw-Hill, 1998, USA.