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Abstract In this paper, the Lie symmetry analysis is presented for the time-fractional KdV

equation with the Riemann-Liouville derivative. We introduce a generalized approx-
imate nonclassical method that is applied to differential equations with fractional

order. In the sense of this symmetry, the vector fields of fractional KdV equation are

obtained. The similarity reduction corresponding to the symmetries of the equation
is constructed.
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1. Introduction

Ordinary and partial differential equations with fractional derivatives have a wide
range of applications as mathematical models of physical processes. These equations
are one of the most accurate tools to refine the description of natural phenomena
[4, 13, 16, 19]. Fractional differential equations have gained much attention since
fractional order system response ultimately converges to the integer order response.
The fractional derivatives are nonlocal operators and provide a powerful instrument
for the description of memory and hereditary properties of different substances. This
is the main advantage of models involving fractional operators in comparison to inte-
ger order models. The KdV equation was first derived as an evolution equation that
governs a one-dimensional, small-amplitude, long surface gravity waves propagating in
a shallow channel of water [14]. This equation has arisen in a number of other physical
contexts as collision-free hydro-magnetic waves, stratified internal waves, ion-acoustic
waves, plasma physics, lattice dynamics, aerodynamics and continuum mechanics as
a model for shock wave formation, solitons, turbulence, boundary layer behavior and
mass transport, etc. [6]. The mathematical theory behind the KdV equation is rich
and interesting and, in the broad sense, is a topic of active mathematical and physical
research. In modeling of these physical phenomena, when memory effects are taken
into account we obtain the KdV differential equation with nonlocal operators and
fractional derivatives. Over the past few years, the fractional KdV equation has been
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studied extensively both theoretically and numerically. There are few studies, how-
ever, on this equation by employing analytical methods [5, 15, 20, 21]. Lie Symmetry
analysis plays a fundamental role in the construction of the analytical and exact so-
lutions of the differential equations [3, 7, 8, 10, 11, 18]. In Lie symmetry method,
the purpose is to get vector fields and afterward to obtain exact solutions of corre-
sponding vector fields. Analytical solutions for some fractional differential equations
have been obtained by the classical and nonclassical Lie symmetry analysis[1, 9, 17].
To achieve new vector fields of a differential equation and consequently new solu-
tions, one of the possible fields for perturbed differential equation of Lie symmetry
method is the ”approximate Lie symmetry method” which firstly is considered by
Baikov et al. [2] . Some researchers have applied approximate classical Lie symmetry
method to find the analytical solutions of some partial differential equations[7, 12].
Approximate nonclassical symmetry method has not been extended and applied to
differential equations. In this study we first intend to express the nonclassical Lie
symmetry analysis to the fractional differential equations. By applying this method,
we achieve infinitesimal generators which are new in comparison with obtained sym-
metries by Lie symmetry method. The obtained results justify the applicability of
the method. We hope this paper is a beginning for future research in this direction.

The rest of this paper is organized as follows: In Section 2, we recall some notations
and introduce approximate nonclassical symmetry theory of a fractional differential
equation with small parameter. An algorithm of calculating such symmetries were
proposed in this section. In Section 3 we obtain the new vector fields by approximate
nonclassical Lie symmetry method, reduction of order and exact solutions for time-
fractional KdV equation.

2. The approximate nonclassical Lie symmetry analysis

The main purpose of this section is to introduce the approximate transformations
group admitted by fractional differential equations with a small parameter ε. we will
consider the approximation in the first order of precision in ε.

Definition 2.1. Let α > 0 and m = [α] + 1. The operator Dα
t , defined by

Dα
t f(t) =

1

Γ(m− α)

dm

dtm

∫ t

0

(t− s)m−α−1f(s)ds,

is called the left-sided Riemann-Liouville fractional differential derivative of order α
[4].

Let us consider the one-parameter group of approximate transformations G

x̄ = x+ aξ(x, t, u, ε) +O(a2),

t̄ = t+ aτ(x, t, u, ε) +O(a2), (2.1)

ū = u+ aϕ(x, t, u, ε) +O(a2),

such that

ξ(x, t, u, ε) ≈ ξ0(x, t, u) + εξ1(x, t, u) + . . .+ εpξp(x, t, u),
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where a, ε are the group parameter and the small parameter, respectively and the
approximate equality f ≈ g means f(x, ε) = g(x, ε) + o(εp). The functions τ and ϕ
are defined similarly. The infinitesimal generator of an approximate transformation
group G (2.1) is

V = ξ(x, t, u, ε)
∂

∂x
+ τ(x, t, u, ε)

∂

∂t
+ ϕ(x, t, u, ε)

∂

∂u
.

In theoretical discussions, approximate equalities are considered with an error o(εp) of
an arbitrary order p ≥ 1. However, in the most of applications the theory is simplified
by letting p = 1. Consider one-parameter approximate transformation groups in the
first order of precision. Let

V = V0 + εV1, (2.2)

be a given infinitesimal generator, where

V0 = ξ0(x, t, u)
∂

∂x
+ τ0(x, t, u)

∂

∂t
+ ϕ0(x, t, u)

∂

∂u
,

V1 = ξ1(x, t, u)
∂

∂x
+ τ1(x, t, u)

∂

∂t
+ ϕ1(x, t, u)

∂

∂u
.

The basic idea of the approximate nonclassical Lie symmetry method is to require
that the perturbed fractional differential equation

F (x, t, u, ux, uxx, · · · , Dα
t u, ε) ≡ F0(x, t, u, ux, uxx, · · · , Dα

t u)

+εF1(x, t, u, ux, uxx, · · · , Dα
t u) ≈ 0,

and the invariance surface condition

Λ : (ξ0 + εξ1)ux + (τ0 + ετ1)ut = ϕ0 + εϕ1, (2.3)

which is associated with the vector field (2.2) are both invariant under the approximate
transformations group G for every infinitesimal generator V of G. Then the invariance
is given by

Pr(α,t)V (Λ)
∣∣
F≈0,Λ≈0

≈ 0, P r(α,t)V (F )
∣∣
F≈0,Λ≈0

≈ 0, (2.4)

where

Pr(α,t)V = V + ϕx
∂

∂ux
+ ϕxx

∂

∂uxx
+ · · ·+ ϕ(α,t) ∂

∂Dα
t u
,

with

ϕ(α,t) = Dαt ϕ+ ξDα
t ux −Dαt (ξux)−Dα+1

t (τu) +Dαt (Dt(τ)u) + τDα+1
t u,

ϕx = Dxϕ−Dx(ξ)ux −Dx(τ)ut, ϕxx = Dx(ϕx)−Dx(ξ)uxx −Dx(τ)uxt,

ϕxxx = Dx(ϕxx)−Dx(ξ)uxxx −Dx(τ)uxxt, · · · (2.5)

Remark 2.2. In the case that the function f is multivariable, f(x, t, u), Dα
t f,D

n
t f

stands for the partial fractional and integer derivative of f w.r.t. t where the other
variables, x and u, are constant and Dαt f,Dnt f denote the total fractional derivative
and the total derivative of f w.r.t. t, respectively.
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It is easy to prove that the first condition (2.4) is identically satisfied and we only
consider the second condition, thus

Pr(α,t)V (F )
∣∣
F≈0,Λ≈0

≈ 0. (2.6)

The approximate determining equation (2.6) is equivalent to condition

Pr(α,t)V0(F0) + ε
[
Pr(α,t)V1(F0) + Pr(α,t)V0(F1)

] ∣∣
F≈0,Λ≈0

≈ 0.

3. The approximate nonclassical symmetry for the time-fractional
KdV equation

We consider the perturbed generalized KdV equation with fractional order

∆ : Dα
t u = upux + εuxxx, 0 < α ≤ 1, p > 0, (3.1)

where |ε| < 1 is a small parameter. A one-parameter Lie group of the approximate
transformations (2.1) is admitted by Eq. (3.1) if and only if

Pr(α,t)V (∆)
∣∣
∆≈0,Λ≈0

≈ 0.

Applying Pr(α,t)V to Eq. (3.1), we find the Lie’s invariance condition

pϕ0u
p−1ux+upϕx0−ϕ

(α,t)
0 +εϕxxx0 +εpϕ1u

p−1ux+εupϕx1−εϕ
(α,t)
1

∣∣
∆≈0,Λ≈0

≈0. (3.2)

Taking into account the invariant surface condition (2.3), We can recognize two cases:
ξ0 + εξ1 6= 0 and ξ0 + εξ1 = 0. In the case ξ0 + εξ1 6= 0, without loss of generality, we
can put ξ0 = 1 and ξ1 = 0, thus we have

ux = ϕ0 + εϕ1 − (τ0 + ετ1)ut. (3.3)

Here it should be also mentioned that in Definition 2.1, the lower limit of the integral
is fixed, hence it should be invariant with respect to group of transformation (2.1);
i.e.

τ0(x, t, u)|t=0 = 0, τ1(x, t, u)|t=0 = 0.

Differentiating Eq. (3.3) w.r.t. t and x, we get

uxt = Dt(ϕ0 + εϕ1)−Dt(τ0 + ετ1)ut − (τ0 + ετ1)utt,

uxx = Dx(ϕ0 + εϕ1)− (τ0 + ετ1)Dt(ϕ0 + εϕ1)− [Dx(τ0 + ετ1)

−(τ0 + ετ1)Dt(τ0 + ετ1)]ut + (τ0 + ετ1)2utt,

uxxt = DtDx(ϕ0 + εϕ1)−Dt(τ0 + ετ1)Dt(ϕ0 + εϕ1)− (τ0 + ετ1)D2
t (ϕ0 + εϕ1)

−
{
DtDx(τ0 + ετ1)− [Dt(τ0 + ετ1)]2 − (τ0 + ετ1)D2

t (τ0 + ετ1)
}
ut

−[Dx(τ0 + ετ1)− 3(τ0 + ετ1)Dt(τ0 + ετ1)]utt + (τ0 + ετ1)2uttt,

uxxx = D2
x(ϕ0 + εϕ1)− 2Dx(τ0 + ετ1)Dt(ϕ0 + εϕ1)− (τ0 + ετ1)DxDt(ϕ0 + εϕ1)

+(τ0 + ετ1)Dt(τ0 + ετ1)Dt(ϕ0 + εϕ1) + (τ0 + ετ1)2D2
t (ϕ0 + εϕ1)

−{D2
x(τ0 + ετ1)− 2Dx(τ0 + ετ1)Dt(τ0 + ετ1)− (τ0 + ετ1)DxDt(τ0 + ετ1)

+(τ0 + ετ1)[Dt(τ0 + ετ1)]2 + (τ0 + ετ1)2D2
t (τ0 + ετ1)}ut

+[3(τ0 + ετ1)Dx(τ0 + ετ1)− 3(τ0 + ετ1)2Dt(τ0 + ετ1)]utt − (τ0 + ετ1)3uttt.
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After substituting ϕx0 , ϕ
x
1 , ϕ

xxx
0 , ϕ

(α,t)
0 , ϕ

(α,t)
1 into Eq. (3.2) (notice that these are the

same as (2.5) except that ξ, τ, ϕ will be replaced by ξ0, τ0, ϕ0 or ξ1, τ1, ϕ1), replacing
Dα
t u by upux+εuxxx, then re-substituting the expressions ux, uxt, uxx, uxtt, uxxt, uxxx

wherever it occurs, we obtain the approximate nonclassical determining equations for
the symmetry group. To analyze these, we set the coefficients of 1, ut, u

2
t , utt, . . . to

zero. The coefficient of u2
tt is

3τ3
0 τ0u = 0,

and so we have the two situations: τ0 = 0 and τ0u = 0. If τ0 = 0, we equate the
coefficients of the remaining partial derivatives of u to zero and we find the determining
equations as follows

pϕ2
0 + ϕ0xu = 0, Dα

t ϕ0 − uDα
t ϕ0u = 0, Dn

t ϕ0u = 0, n ∈ N,

2pϕ0ϕ1u
p−1 + ϕ0xxx + 3ϕ0ϕ0xxu + 3ϕ2

0ϕ0xuu + ϕ3
0ϕ0uuu + 3ϕ0xϕ0xu

+3ϕ0ϕ0uϕ0xu + 3ϕ0ϕ0xϕ0uu + 3ϕ2
0ϕ0uϕ0uu + ϕ1xu

p + ατ1tϕ0u
p = 0

pτ1ϕ0 + τ1xu+ (1− α)τ1uϕ0u = 0, Dα
t ϕ1 − uDα

t ϕ1u = 0,(
α

n

)
Dn
t ϕ1u −

(
α

n+ 1

)
Dn+1
t τ1 = 0, n ∈ N. (3.4)

Solving the system of equations (3.4) for ϕ0, τ1 and ϕ1, we achieve for p = 1 and
p = 1

2

ϕ0 =
u

px+ β
, τ1 =

c1t

px+ β
, ϕ1 =

(−αc1x+ c2)u+ c3t
α−1

(px+ β)2
,

where c1, c2, c3, β are arbitrary constants. Therefore

V = V0 + εV1 = ∂x +
εc1t

px+ β
∂t +

(
u

px+ β
+ ε

(−αc1x+ c2)u+ c3t
α−1

(px+ β)2

)
∂u,

and in this case, the approximate symmetry algebra of Eq. (3.1) is spanned by the
four vector fields

V1 = ∂x +
u

px+ β
∂u, V2 = ∂x +

εt

px+ β
∂t +

(px+ β − εαx)u

(px+ β)2
∂u,

V3 = ∂x +
(px+ β + ε)u

(px+ β)2
∂u, V4 = ∂x +

(px+ β)u+ εtα−1

(px+ β)2
∂u.

If τ0 6= 0 and τ0u = 0, we find immediately the set of determining equations for the
approximate nonclassical symmetry group of Eq. (3.1). To find τ0 and ϕ0, after
simplifying, these equations can be written as follows

ϕ0uu=0, Dα
t ϕ0−uDα

t ϕ0u=0,

(
α

n

)
Dn
t ϕ0u−

(
α

n+1

)
Dn+1
t τ0 =0, n ∈ N,

ατ0τ0t + 3τ0x = 0, τ0xϕ0u − τ0ϕ0xu = 0, pτ0ϕ0 − 2τ0xu = 0,
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which has solutions

τ0 =
3t

αx+ γ
, ϕ0 =

−2αu

p(αx+ γ)
,

where γ is arbitrary constant. Substituting τ0 and ϕ0 into the remaining determining
equations, we have

τ1u = 0, 2pϕ0ϕ1 + ατ0tϕ1u+ ϕ1xu+ ατ1tϕ0u = 0

pτ1ϕ0 + ατ0tτ1u+ pτ0ϕ1 + τ1xu+ ατ0τ1t = 0, Dα
t ϕ1 − uDα

t ϕ1u = 0,(
α

n

)
Dn
t ϕ1u −

(
α

n+ 1

)
Dn+1
t τ1 = 0, n ∈ N.

After solving this system of equations for τ1 and ϕ1, we find

τ1 =
c4(αx+ γ)t+ c5t

(αx+ γ)2
, ϕ1 = −3c4α(αx+ γ)u+ 2c5αu

3p(αx+ γ)2
,

where c4, c5 are arbitrary constants. Hence

V =V0+εV1 =∂x+
(3+εc4)(αx+γ)t+εc5t

(αx+ γ)2
∂t−

α(6+3εc4)(αx+γ)u+2εc5αu

3p(αx+ γ)2
∂u.

In this case, the approximate symmetry algebra of Eq. (3.1) is spanned by the three
vector fields

V5 = ∂x+
3t

αx+ γ
∂t−

2αu

p(αx+ γ)
∂u, V6 = ∂x+

(3 + ε)t

αx+ γ
∂t−

α(2 + ε)u

p(αx+ γ)
∂u,

V7 = ∂x +
3(αx+ γ)t+ εt

(αx+ γ)2
∂t −

6α(αx+ γ)u+ 2εαu

3p(αx+ γ)2
∂u.

In the case ξ0 + εξ1 = 0 and τ0 + ετ1 6= 0, similar to the previous case, we have
(τ0 + ετ1)ut = ϕ0 + εϕ1. Differentiating this equation and get uxt, uxxt and also
re-substituting these expressions wherever it occurs, we obtain the nonclassical deter-
mining equations which are difficult to solve.

Remark 3.1. Notice that V1 and V5 are the nonclassical infinitesimal generators of
Eq. (3.1) [17].

These vector fields can be used to construct the exact solution of Eq. (3.1).

Example 3.2. We consider the KdV equation

Dα
t u = uux + εuxxx, (3.5)

with approximate infinitesimal generator V = V3 with invariant solution

u(x, t) = (x+ β)e−
ε

x+β f(t).

Now we use the Taylor expansion of e−
ε

x+β about ε = 0 and we have

u(x, t) = (x+ β)

[
1− ε

x+ β
+ · · ·

]
f(t) = (x+ β − ε) f(t) + o(ε)

≈ (x+ β − ε) f(t).



CMDE Vol. 8, No. 1, 2020, pp. 111-118 117

Substituting this approximate solution into Eq. (3.5), we obtain

Dα
t f(t) = f2(t) + o(ε), or Dα

t f(t) ≈ f2(t).

Then the approximate invariant solution of Eq. (3.5) is

u(x, t) =
Γ(1− α)

Γ(1− 2α)
(x+ β − ε)t−α.

4. Conclusion

In this paper, we applied the approximate nonclassical Lie symmetry analysis to a
class of time-fractional differential equations with the small parameter. By employ-
ing these method and some technical calculations, new infinitesimal generators are
obtained for time-fractional KdV equations. The basic idea described in this paper
is an efficient and powerful method for solving wide classes of perturbed fractional
differential equations.
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