تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,021 |
تعداد مشاهده مقاله | 52,491,542 |
تعداد دریافت فایل اصل مقاله | 15,218,381 |
بررسی امکان استفاده از مدل انفیس و رگرسیون خطی چند متغیره در پیش بینی نوسانات جمعیت سن گندم Puton (Hemiptera, Scutelleridae) Eurygaster integriceps با استفاده از متغیرهای محیطی در شهرستان چادگان | ||
پژوهش های کاربردی در گیاهپزشکی | ||
مقاله 2، دوره 8، شماره 2، شهریور 1398، صفحه 21-32 اصل مقاله (1014.71 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
زهرا دوستی* 1؛ ناصر معینی2؛ عباسعلی زمانی3؛ لیلا ندرلو4 | ||
1دانش آموخته ی دکتری حشره شناسی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران، | ||
2استادیار گروه گیاهپزشکی دانشکده کشاورزی دانشگاه رازی، کرمانشاه ایران، | ||
3دانشیار گروه گیاهپزشکی دانشکده کشاورزی دانشگاه رازی، کرمانشاه ایران، | ||
4استادیار گروه مهندسی مکانیک بیوسیستم ، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران، | ||
چکیده | ||
چکیده سیستمهای هوشمند به عنوان یکی از روشهای نوین مدلسازی در سالهای اخیر مورد توجه ویژه قرار گرفتهاند. این مدلها برای پیشبینی و طبقهبندی در مواردی که روشهای کلاسیک آماری به خاطر محدودیتهایشان قابل استفاده نیستند، کاربرد دارند. هدف از این مطالعه، مقایسهی توانایی مدلهای انفیس و رگرسیون خطی چند گانه جهت پیشبینی تراکم مراحل مختلف رشدی سن گندم Eurygaster integriceps است. دادههای مربوط به نوسانات جمعیت سن گندم در دو مزرعه به مساحت یک هکتار طی سالهای 1394 و 1395 در شهرستان چادگان بدست آمد. در این مدلها از متغیرهای تاریخ نمونه برداری، متوسط دما، میانگین رطوبت نسبی، سرعت باد، جهت باد، بارش، روز- درجه و ارتفاع از سطح دریا به عنوان متغیرهای ورودی و تغییرات مجموع مراحل مختلف رشدی سن گندم به عنوان متغیر خروجی استفاده شد. در مدل انفیس 70 درصد دادهها به آموزش و 30 درصد آنها به تعیین اعتبار مدل اختصاص یافت. سپس با آموزش شبکه و تعیین ساختار مطلوب بر اساس نوع، تعداد تابع عضویت و قوانین مربوطه به کمک نرم افزار MATLAB، مناسبترین مدل بر اساس شاخص های آماری مجذور میانگین مربعات خطا (RMSE) و ضریب تبیین (R2) بدست آمد. در نهایت پس از آنالیز حساسیت، نتایج نشان داد که روش انفیس (R2=0.97 , RMSE=0.051 ) از صحت و دقت بالاتری نسبت به روش رگرسیون خطی چند متغیره (R2=0.47 , RMSE=0.26 ) برخوردار است و عملکرد بهتری در پیشبینی نوسانات جمعیت سن گندم دارد. | ||
کلیدواژهها | ||
واژههای کلیدی: انفیس؛ آب و هوا؛ رگرسیون خطی چند متغیره؛ سن گندم؛ نوسانات جمعیت | ||
مراجع | ||
احمدزاده قره گویز ک، میرلطیفی س م، محمدی ک، 1389. مقایسه سیستمهای هوش مصنوعی (ANFIS و ANN) در تخمین میزان تبخیر تعرق گیاه مرجع در مناطق بسیار خشک ایران، نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 4، شماره 24، صفحههای 689- 679. ایرانی پور ش، خرازی پاکدل ع، رجبی غ، رسولیان غ. و مجنی، ح. 1381. تلفات ویژه سنی و تغییرات سرعت نشو و نمای مراحل نابالغ سن گندم Eurygaster integriceps در چهار دمای ثابت آزمایشگاهی، مجله آفات و بیماریهای گیاهی، جلد 2، شماره 70، صفحههای 17-1. کیا م، 1389. شبکههای عصبی در متلب، خدمات نشر کیان رایانه سبز. معینی نقده ن. 1381. مدل پیش آگاهی روز- درجه ناحیهای برای پیش بینی مراحل رشدی سن گندم در شرایط متغیر دمایی در مزرعه. رساله دکتری، دانشگاه تربیت مدرس، تهران. 90 صفحه. Abraham A, 2005. Adaptation of fuzzy inference system using neural learning. Fuzzy Systems Engineering, 914-914. Arkhipov M, Kruger E and Kurtener D, 2008. Evaluation of ecological conditions using bioindicators: application of fuzzy modeling. Lecture Notes in Computer Science, 491–500. Balan B, Mohaghegh S and Ameri S, 1995. State- of- Art- in permeability determination from well log data: Part 1- A comparative study, Model development. Society of Petroleum Enginners, 17-25. Bianconi A, Von Zuben CJ, Scrapiao ABS, and Govone J, 2009. Artificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephala. Journal of Insect Science, 10: 1-18. Chon TS, Kim JM, Lee BY, Chung YJ, and Kim Y, 2000. Use of an artificial neural network to predict population dynamics of the Forest–Pest pine needle gall midge (Diptera: Cecidomyiida). Journal of Environmental Entomology, 29: 1208-1215. Erahaghi I, Xuchai L, Mahnaz H. and Yusuf S, 1993.A robust neural network model for pattern recognition of pressure transient test data. Society petroleum engineering annual technical conference and exhibition, 3–6 October 1993. Houston, Texas. Gardner MW, Dorling SR, 1998. Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences. Atmospheric Environment. 32 (14/15): 2627–2636. Khanna TF, 1990. Foundation of Neural Networks. New York: Addison-Wesley. Kisi OT, Haktanir M, Ardiclioglu O, Ozturk E, Yalcin and Uludag S. 2009. Adaptive neurofuzzy computing technique for suspended sediment estimation. Advances in Engineering Software. 40: 438-444. Lankin GO, Worner GO, Samarasinghe S and Teulon DAJ, 2001. Can artificial neural network systems be used for forecasting aphid flight patterns. New Zealand Plant Protection, 54: 188-192. Lessio F, Mondino EB and Alma A. 2011. Spatial patterns of Scaphoideus titanus (Hemiptera: Cicadellidae): a geostatistical and neural network approach. International Journal of Pest Management, 57: 205-216. Pedigo LP, 1994. Introduction to sampling Arthropod population. Hanbook of sampling methods for Arthropoda Agriculture, ed. P. Pedigo and G.D. Buntin. CRC Boka Raton. Tonnangt HEZ, Nedorezov LV, Ochanda H, Owino JO and Lohr B, 2010. Host- parasitoid population density prediction using artificial neural networks: diamondback moth and its natural enemies. Agricultural and Entomology. 12: 233- 242. Yang LN, Peng L, Zhang LM, Zhang LL and Yang SS, 2009. A prediction model for population occurrence of paddy stem borer (Scirpophaga incertulas), based on Back Propagation Artificial Neural Network and Principal Components Analysis. Computers and Electronics in Agricultur,200-206. Zhang WJ, Liu GH and Dia, HQ, 2008. Simulation of food intake dynamics of holometabolous insect using functional link artificial neural network. Stochastic Environmental Research and Risk Assessment. 22: 123-133. Zhang, WJ and Zhang XY, 2008. Network modeling of survival dynamics of holometabolous insects: A case study. Ecological Modelling. 211: 433-443. | ||
آمار تعداد مشاهده مقاله: 645 تعداد دریافت فایل اصل مقاله: 529 |