تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,538,585 |
تعداد دریافت فایل اصل مقاله | 15,242,280 |
Stability and numerical approximation for a spacial class of semilinear parabolic equations on the Lipschitz bounded regions: Sivashinsky equation | ||
Computational Methods for Differential Equations | ||
مقاله 8، دوره 7، Issue 4 (Special Issue)، آبان 2019، صفحه 589-600 اصل مقاله (514.57 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Mehdi Mesrizadeh1؛ Kamal Shanazari* 2 | ||
1Department of Mathematics, Imam Khomeini International University,Qazvin, IRAN. | ||
2Department of mathematics, University of Kurdistan, Sanandaj, Iran | ||
چکیده | ||
This paper aims to investigate the stability and numerical approximation of the Sivashinsky equations. We apply the Galerkin meshfree method based on the radial basis functions (RBFs) to discretize the spatial variables and use a group presenting scheme for the time discretization. Because the RBFs do not generally vanish on the boundary, they can not directly approximate a Dirichlet boundary problem by Galerkin method. To avoid this difficulty, an auxiliary parametrized technique is used to convert a Dirichlet boundary condition to a Robin one. In addition, we extend a stability theorem on the higher order elliptic equations such as the biharmonic equation by the eigenfunction expansion. Some experimental results will be presented to show the performance of the proposed method. | ||
کلیدواژهها | ||
Eigenvalue؛ Eigenfunction؛ Galerkin meshless method؛ Sivashinsky equation؛ Stability | ||
آمار تعداد مشاهده مقاله: 387 تعداد دریافت فایل اصل مقاله: 261 |