Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 7, No. 4 (Special Issue), 2019, pp. 573-579

Some notions of $(\sigma,\tau)-\text{amenability}$ for unitization of Banach algebras

Eghbal Ghaderi^{*}

Department of Mathematics, University of Kurdistan, Pasdaran Str., P. O. Box 416, Sanandaj, Iran. E-mail: eg.ghaderi@uok.ac.ir

Saber Naseri Department of Mathematics, University of Kurdistan, Pasdaran Str., P. O. Box 416, Sanandaj, Iran. E-mail: s.naseri@uok.ac.ir

Abstract

ct Let \mathcal{A} be a Banach algebra and σ and τ be continuous endomorphisms on \mathcal{A} . In this paper, we investigate (σ, τ) -amenability and (σ, τ) -weak amenability for unitization of Banach algebras, and also the relation between of them. We introduce and study the concepts (σ, τ) -trace extention property, (σ, τ) -I-weak amenability and (σ, τ) -ideal amenability for \mathcal{A} and its unitization, where I is a closed two-sided ideal in \mathcal{A} .

Keywords. Banach algebra, (σ, τ) -ideal amenability, (σ, τ) -weak amenability, Unitization. 2010 Mathematics Subject Classification. 46H05, 46H25.

1. INTRODUCTION

Let \mathcal{A} be a Banach algebra and \mathcal{X} be a Banach \mathcal{A} -bimodule. Then \mathcal{X}^* , the dual space of \mathcal{X} , by thy following module actions is a Banach \mathcal{A} -bimodule.

$$\langle x^* \cdot a, x \rangle = \langle x^*, a \cdot x \rangle, \qquad \langle a \cdot x^*, x \rangle = \langle x^*, x \cdot a \rangle,$$

for all $a \in \mathcal{A}, x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$. So, it is clear that any closed two-sided ideal I of \mathcal{A} and its dual I^* are Banach \mathcal{A} -bimodules. The linear map $d : \mathcal{A} \longrightarrow \mathcal{X}$ is derivation if $d(aa') = a \cdot d(a') + d(a) \cdot a'$ for all $a, a' \in \mathcal{A}$. Also, for $x \in \mathcal{X}$ the derivation $ad_x : \mathcal{A} \longrightarrow \mathcal{X}$ defined by $ad_x(a) = a \cdot x - x \cdot a$ called inner derivation and if for derivation $d : \mathcal{A} \longrightarrow \mathcal{X}$ there exists a net $(x_\alpha) \subseteq \mathcal{X}$ such that $d(a) = \lim(a \cdot x_\alpha - x_\alpha \cdot a)$ for all $a \in \mathcal{A}$, then d is an approximate inner derivation. The set of all continuous derivations and inner derivations from \mathcal{A} to Banach \mathcal{A} -bimodule \mathcal{X} are denoted by $Z^1(\mathcal{A}, \mathcal{X})$ and $N^1(\mathcal{A}, \mathcal{X})$, respectively. Also, the quotient space $H^1(\mathcal{A}, \mathcal{X}) = Z^1(\mathcal{A}, \mathcal{X})/N^1(\mathcal{A}, \mathcal{X})$ is first cohomology group of \mathcal{A} with coefficients in \mathcal{X} . The Banach algebra \mathcal{A} is called amenable if $H^1(\mathcal{A}, \mathcal{X}^*) = \{0\}$ for all Banach \mathcal{A} -bimodule \mathcal{X} . The concept of amenability of Banach algebra was first introduced by Johnson [2] in 1972.

^{*} Corresponding author.

We recall that from [6], for any two bounded continuous endomorphisms σ and τ on Banach algebra \mathcal{A} , the linear map $d: \mathcal{A} \longrightarrow \mathcal{X}$ is called (σ, τ) -derivation if

$$d(aa') = \sigma(a) \cdot d(a') + d(a) \cdot \tau(a'),$$

for all $a, a' \in \mathcal{A}$. For any $x \in \mathcal{X}$, the derivation $\operatorname{ad}_x : \mathcal{A} \longrightarrow \mathcal{X}$ defined via $\operatorname{ad}_x(a) = \sigma(a) \cdot x - x \cdot \tau(a)$ is called (σ, τ) -inner derivation for all $a \in \mathcal{A}$. Also, the derivation $d : \mathcal{A} \longrightarrow \mathcal{X}$ is (σ, τ) -approximately inner if there exists the net $(x_\alpha) \subseteq \mathcal{X}$ such that $d(a) = \operatorname{ad}_{x_\alpha}(a) = \lim_{\alpha} (\sigma(a) \cdot x_\alpha - x_\alpha \cdot \tau(a))$ in the stronge topology for all $a \in \mathcal{A}$. Similarly, the set of all continuous (σ, τ) -derivations and (σ, τ) inner derivations from \mathcal{A} to \mathcal{X} denoted by $Z^1_{(\sigma,\tau)}(\mathcal{A},\mathcal{X})$ and $N^1_{(\sigma,\tau)}(\mathcal{A},\mathcal{X})$, respectively, and $H^1_{(\sigma,\tau)}(\mathcal{A},\mathcal{X}) = Z^1_{(\sigma,\tau)}(\mathcal{A},\mathcal{X})/N^1_{(\sigma,\tau)}(\mathcal{A},\mathcal{X})$ is the first (σ, τ) -cohomology group of \mathcal{A} with coefficients in \mathcal{X} . The Banach algebra \mathcal{A} is (σ, τ) -amenable if any (σ, τ) -derivation $d : \mathcal{A} \longrightarrow \mathcal{X}^*$ be (σ, τ) -inner, for all Banach \mathcal{A} -bimodule \mathcal{X} . The notion of (σ, τ) -amenability of Banach algebra introduced and studied by Moslehian [5]. Moreover, for σ as an bounded endomorphism of \mathcal{A} , Momeni, Yazdanpanah and Mardanbeigi [3] introduced the notios $\sigma - I$ -weak amenability and σ -ideal amenability for Banach algebras. Here, we introduce and study the concepts $(\sigma, \tau) - I$ -weak amenability and (σ, τ) -ideal amenability for \mathcal{A} , where I is a closed two-sided ideal in \mathcal{A} .

In section 1, we study the notions (σ, τ) -amenability and (σ, τ) -weak amenability of Banach algebra \mathcal{A} and \mathcal{A}^{\sharp} , its unitization. Also, we investigate the relationship these concepts between Banach algebra \mathcal{A} and \mathcal{A}^{\sharp} . In section 2, we introduce (σ, τ) -ideal amenability of Banach algebras and We examine the relationship between these concepts for \mathcal{A} and \mathcal{A}^{\sharp} . finally, we obtain results for hereditary properties of (σ, τ) -ideal amenability of Banach algebras.

2. (σ, τ) -weak amenability

For two endomorphisms $\sigma, \tau : \mathcal{A} \longrightarrow \mathcal{A}$, the Banach algebra \mathcal{A} is (σ, τ) -weak amenable if every derivation $d : \mathcal{A} \longrightarrow \mathcal{A}^*$ is (σ, τ) -inner. In the special case if σ and τ are identity homomorphisms on \mathcal{A} , then weak amenability of \mathcal{A} is obtained (See [1] for more details). Suppose that \mathcal{A} is not unital Banach algebra, $\mathcal{A}^{\sharp} = \mathcal{A} \oplus \mathbb{C}e$ and σ be a homomorphism on \mathcal{A} . Then we define $\sigma^{\sharp} : \mathcal{A}^{\sharp} \longrightarrow \mathcal{A}^{\sharp}$ by

$$\sigma^{\sharp}((a,\lambda)) = (\sigma(a),\lambda)$$

for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Clearly, σ^{\sharp} is a homomorphism on \mathcal{A}^{\sharp} . It is clear that if $d : \mathcal{A} \longrightarrow \mathcal{A}$ be any endomorphism on Banach algebra \mathcal{A} , then d is a $\frac{d}{2}$ -derivation. Moreover every ordinary derivation of an algebra \mathcal{A} into a Banach \mathcal{A} -module \mathcal{X} is an $id_{\mathcal{A}}$ -derivation, where $id_{\mathcal{A}}$ is the identity mapping on the algebra \mathcal{A} .

Example 2.1. Let \mathcal{A} be a Banach algebra and suppose that $\sigma, \tau : \mathcal{A} \longrightarrow \mathcal{A}$ are two arbitrary linear mappings. Moreover, suppose that \mathcal{X} is a Banach \mathcal{A}^{\sharp} -bimodule. If x is an element of \mathcal{X} satisfying

$$x(\sigma(aa') - \sigma(a)\sigma(a'), 0) = (\tau(aa') - \tau(a)\tau(a'), 0)x,$$

for all $a, a' \in \mathcal{A}$. Then the mapping $d: \mathcal{A}^{\sharp} \longrightarrow \mathcal{X}$ defined by

$$d(a,\lambda) = x(\sigma(a),\lambda) - (\tau(a),\lambda)x$$

is a $(\sigma^{\sharp}, \tau^{\sharp})$ -derivation, for each $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$.

Note that in the Example 2.1, if σ and τ are two endomorphisms, then x can be any arbitrary element of \mathcal{X} . Now, we have the following Theorem.

Proposition 2.2. Let σ and τ be two homomorphisms on Banach algebra \mathcal{A} . Then \mathcal{A} is (σ, τ) -amenable if and only if \mathcal{A}^{\sharp} be $(\sigma^{\sharp}, \tau^{\sharp})$ -amenable.

proof. First suppose that \mathcal{A} is (σ, τ) -amenable, \mathcal{X} is Banach \mathcal{A}^{\sharp} -bimodule and $D^{\sharp}: \mathcal{A}^{\sharp} \longrightarrow \mathcal{X}^{*}$ is a $(\sigma^{\sharp}, \tau^{\sharp})$ -derivation. Then by below module actions \mathcal{X} is a Banach \mathcal{A} -bimodule

$$x \cdot a = x(a,0), \qquad a \cdot x = (a,0)x,$$

for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$. Also, by a rutine calculating conclude that the restriction D^{\sharp} to $D : \mathcal{A} \longrightarrow \mathcal{X}^*$ by $D(a) = D^{\sharp}(a, 0)$ is a (σ, τ) -derivation. So, there exists $f \in \mathcal{X}^*$ such that $D(a) = f \cdot \sigma(a) - \tau(a) \cdot f$. It is clear that $D^{\sharp}(0, 1) = 0$, thus we have that

$$D^{\sharp}(a,\lambda) = D(a) + \lambda D^{\sharp}(0,1)$$

= $D(a)$
= $f \cdot \sigma^{\sharp}(a,\lambda) - \tau^{\sharp}(a,\lambda) \cdot f$

for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$.

Conversely, suppose that \mathcal{X} is a Banach \mathcal{A} -bimodule and $D : \mathcal{A} \longrightarrow \mathcal{X}^*$ is a (σ, τ) -derivation. Then by module actions

$$x \cdot (a, \lambda) = xa + \lambda x$$
 $(a, \lambda) = ax + \lambda x,$

 \mathcal{X} is \mathcal{A}^{\sharp} -bimodule for all $a \in \mathcal{A}, x \in \mathcal{X}$ and $\lambda \in \mathbb{C}$. Now we define $D^{\sharp} : \mathcal{A}^{\sharp} \longrightarrow \mathcal{X}^{*}$ by $D^{\sharp}(a, \lambda) = D(a)$. Clearly, D^{\sharp} is $(\sigma^{\sharp}, \tau^{\sharp})$ -derivation. Thus, there exists $f \in \mathcal{X}^{*}$ such that

$$D^{\sharp}(a,\lambda) = f \cdot \sigma^{\sharp}(a,\lambda) - \tau^{\sharp}(a,\lambda) \cdot f.$$

Therefore, we have that

$$\begin{aligned} \langle D(a), x \rangle &= \langle D^{\sharp}(a, \lambda), x \rangle \\ &= \langle f \cdot \sigma^{\sharp}(a, \lambda) - \tau^{\sharp}(a, \lambda) \cdot f, x \rangle \\ &= \langle f, (\sigma(a), \lambda) \cdot x \rangle - \langle f, x \cdot (\tau(a), \lambda) \rangle \\ &= \langle f, \sigma(a) \cdot x + \lambda x - x \cdot \tau(a) - \lambda x \rangle \\ &= \langle f \cdot \sigma(a) - \tau(a) \cdot f, x \rangle, \end{aligned}$$

for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$. Hence, \mathcal{A} is (σ, τ) -amenable.

Suppose that \mathcal{A} is not unital and $\mathcal{A}^{\sharp} = \mathcal{A} \oplus \mathbb{C}e$. Then we define $e^* \in (\mathcal{A}^{\sharp})^*$ such that $\langle e^*, e \rangle = 1$ and $\langle e^*, a \rangle = 0$, for all $a \in \mathcal{A}$. Therefore, we have that

$$\mathcal{A}^{\sharp^*} = \mathcal{A}^* \oplus \mathbb{C}e^*.$$

The module actions of \mathcal{A}^{\sharp} on \mathcal{A}^{\sharp^*} are given by

$$(a + \lambda e) \cdot (f + \mu e^*) = (\lambda f + a \cdot f) + (\lambda \mu + f(a))e^*,$$

$$(f + \mu e^*) \cdot (a + \lambda e) = (\lambda f + f \cdot a) + (\lambda \mu + f(a))e^*.$$

where $a \in \mathcal{A}, f \in \mathcal{A}^*$ and $\lambda, \mu \in \mathbb{C}$.

Corollary 2.3. If σ be a homomorphism with dense range on Banach algebra \mathcal{A} and \mathcal{A} be σ -weakly amenable, then $\overline{\mathcal{A}^2} = \mathcal{A}$.

Proof. The proof of this result is similar to [4], Proposition 2.1 but here it is enough define $d: \mathcal{A} \longrightarrow \mathcal{A}^*$ by $\langle d(a), a' \rangle = \langle f, \sigma(a) \rangle \langle f, a' \rangle$ for all $a, a' \in \mathcal{A}$.

Proposition 2.4. Let \mathcal{A} be a Banach algebra, σ and τ are two continuous homomorphisms on \mathcal{A} such that $\sigma(a)b = a\tau(b)$ for all $a, b \in \mathcal{A}$ and \mathcal{A} is (σ, τ) -weakly amenable. Then \mathcal{A}^{\sharp} is $(\tilde{\sigma}, \tilde{\tau})$ -weakly amenable if one of the following statements hold.

(i) $a\tau(\sigma(b)) = \sigma(\tau(a))b$, for all $a, b \in \mathcal{A}$. (ii) $f \circ \sigma(\mathcal{A}^2) = f \circ \tau(\mathcal{A}^2)$, for all $f \in \mathcal{A}^*$

Proof. Suppose that $\tilde{D} : \mathcal{A}^{\sharp} \longrightarrow (\mathcal{A}^{\sharp})^*$ is a $(\tilde{\sigma}, \tilde{\tau})$ -derivation. We show that \tilde{D} is $(\tilde{\sigma}, \tilde{\tau})$ -inner. Clearly, $\tilde{D}(e) = 0$. So, we can write $\tilde{D} : \mathcal{A} \longrightarrow (\mathcal{A}^{\sharp})^*$. Thus, there are bounded linear maps such as $D : \mathcal{A} \longrightarrow \mathcal{A}^*$ and $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ such that $\tilde{D}(a) = D(a) + \varphi(a)e^*$ for all $a \in \mathcal{A}$. By hypothesis conclude

$$D(ab) = \tilde{\sigma}(a) \cdot D(b) + D(a) \cdot \tilde{\tau}(b)$$

= $\sigma(a) \cdot (D(b) + \varphi(b)e^*) + (D(a) + \varphi(a)e^*) \cdot \tau(b)$
= $\sigma(a) \cdot D(b) + \langle D(b), \sigma(a) \rangle e^* + D(a) \cdot \tau(b) + \langle D(a), \tau(b) \rangle e^*$

for all $a, b \in A$. On the other hand, $D(ab) = D(ab) + \varphi(ab)e^*$. Therefore, for all $a, b \in A$ we have that

$$D(ab) = \sigma(a)D(b) + D(a)\tau(b), \qquad \varphi(ab) = \langle D(b), \sigma(a) \rangle + \langle D(a), \tau(b) \rangle.$$

Thus, there exists $f \in \mathcal{A}^*$ such that $D(a) = \operatorname{ad}_f(a) = \sigma(a) \cdot f - f \cdot \tau(a)$ for all $a \in \mathcal{A}$. So, we conclude

$$\varphi(ab) = \langle \sigma(b) \cdot f - f \cdot \tau(b), \sigma(a) \rangle + \langle \sigma(a) \cdot f - f \cdot \tau(a), \tau(b) \rangle$$

= $\langle f, \sigma(ab) \rangle - \langle f, \tau(ab) \rangle$ (1)

for all $a, b \in \mathcal{A}$. It is clear that if one of the conditions (i) or (ii) is holds, then $\varphi(ab) = 0$ for all $a, b \in \mathcal{A}$. Since, $\sigma(a)b = a\tau(b)$ for all $a, b \in \mathcal{A}$. Thus, similar to [4], Proposition 2.1, \mathcal{A} is essential and consequent that $\varphi(a) = 0$ for all $a \in \mathcal{A}$. Therefore, we have that $\tilde{D}(a) = D(a)$ for all $a \in \mathcal{A}$. So, \tilde{D} is $(\tilde{\sigma}, \tilde{\tau})$ -inner.

Proposition 2.5. Let \mathcal{A} be a Banach algebra, σ and τ are two continuous homomorphisms on \mathcal{A} and \mathcal{A}^{\sharp} be $(\tilde{\sigma}, \tilde{\tau})$ -weakly amenable. Then \mathcal{A} is (σ, τ) -weakly amenable.

Proof. Let $D : \mathcal{A} \longrightarrow \mathcal{A}^*$ be a (σ, τ) -derivation. We define $\tilde{D} : \mathcal{A}^{\sharp} \longrightarrow (\mathcal{A}^{\sharp})^*$ via $\tilde{D}(a + \lambda) = D(a)$. Since, for all $a, b \in \mathcal{A}$ conclude

$$\langle D(a), \tau(b) \rangle e^* = 0, \langle D(b), \sigma(a) \rangle e^* = 0.$$

Hence, we have that

$$\begin{split} \tilde{D}((a+\lambda e)(b+\mu e)) &= \sigma(a)D(b) + D(a)\tau(b) + \mu D(a) + \lambda D(b) \\ &= (\sigma(a)D(b) + \lambda D(b) + \langle D(b), \sigma(a) \rangle e^*) \\ &+ (D(a)\tau(b) + \mu D(a) + \langle D(a), \tau(b) \rangle e^*) \\ &= \tilde{\sigma}(a+\lambda e) \cdot \tilde{D}(b+\mu e) + \tilde{D}(a+\lambda e) \cdot \tilde{\tau}(b+\mu e). \end{split}$$

for all $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{C}$. So, there exists $(f + \mu e^*) \in (\mathcal{A}^{\sharp})^*$ such that $\tilde{D}(a + \lambda e) = \hat{\sigma}(a + \lambda e) \cdot (f + \mu e^*) - (f + \mu e^*) \cdot \hat{\tau}(a + \lambda e)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Therefore, we have that $D(a) = \sigma(a) \cdot f + f \cdot \tau(a)$ for all $a \in \mathcal{A}$. \Box

3. (σ, τ) -ideal amenability

We recall that, if we use the ideal of \mathcal{A} in the definition of amenability instead of the Banach bimodule \mathcal{X} , then the ideal amenability concepts are obtained.

Definition 3.1. Suppose that σ and τ are two bounded endomorphism on Banach algebra \mathcal{A} and I is a closed two-sided ideal in \mathcal{A} . Then we say that \mathcal{A} is $(\sigma, \tau) - I$ -weakly amenable if every (σ, τ) -derivation from \mathcal{A} into I^* is (σ, τ) -inner. Also, \mathcal{A} is called (σ, τ) -ideally amenable if \mathcal{A} be $(\sigma, \tau) - I$ -weakly amenable for all closed two-sided ideal I in \mathcal{A} .

Next, we characterize the ideals of \mathcal{A}^{\sharp} . Note that if M is a closed two-sided ideal of \mathcal{A}^{\sharp} , then we can write M to the one of the below form.

(i) $M = \mathcal{A} \oplus Je$ such that J is a closed two-sided ideal of \mathbb{C} .

(ii) $M = I \oplus 0e$ such that I is a closed two-sided ideal of \mathcal{A} .

Theorem 3.2. Suppose that σ and τ are two bounded endomorphisms on Banach algebra \mathcal{A} . Then

i) \mathcal{A} is (σ, τ) -ideally amenable, if \mathcal{A}^{\sharp} be $(\hat{\sigma}, \hat{\tau})$ -ideally amenable.

ii) \mathcal{A}^{\sharp} is $(\tilde{\sigma}, \tilde{\tau})$ -ideally amenable, if \mathcal{A} be (σ, τ) -ideally amenable and $f \circ \sigma = f \circ \tau$ for all $f \in \mathcal{A}^*$.

Proof. i) Let $d: \mathcal{A} \longrightarrow I^*$ be a (σ, τ) -derivation such that I is a closed two-sided ideal of Banach algebra \mathcal{A} . It is clear that I is a closed two-sided ideal of \mathcal{A}^{\sharp} and $\tilde{d}: \mathcal{A}^{\sharp} \longrightarrow (I)^*$ via $\tilde{d}(a + \lambda) = d(a)$ is a $(\hat{\sigma}, \hat{\tau})$ -derivation. So, there exists $g \in I^*$ such that

$$\tilde{d}(a,\lambda) = \mathrm{ad}_{g}^{(\hat{\sigma},\hat{\tau})}(a,\lambda) = \hat{\sigma}(a,\lambda) \cdot g - g \cdot \hat{\tau}(a,\lambda)$$

for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Therefore, conclude that $d(a) = \sigma(a) \cdot g - g \cdot \tau(a)$ for all $a \in \mathcal{A}$.

ii) By above statement, if $\tilde{D} : \mathcal{A}^{\sharp} \longrightarrow M^*$ is $(\tilde{\sigma}, \tilde{\tau})$ -derivation, where M is a closed two-sided ideal of \mathcal{A}^{\sharp} , then it is clear that the map $D : \mathcal{A} \longrightarrow (M_{|_{\mathcal{A}}})^*$ via $D(a) = \tilde{D}(a,0)$ is (σ,τ) -derivation. Thus, there exists $f \in (M_{|_{\mathcal{A}}})^*$ such that $D(a) = \sigma(a) \cdot f - f \cdot \tau(a)$ for all $a \in \mathcal{A}$. We know that $\tilde{D}(e) = 0$. So, $\tilde{D}(a,\lambda) = D(a)$. On the

$$\begin{split} \tilde{\sigma}(a,\lambda) \cdot \tilde{f} - \tilde{f} \cdot \tilde{\tau}(a,\lambda) &= \sigma(a) \cdot \tilde{f} + \lambda \tilde{f} + \tilde{f}(\sigma(a))e^* - \tilde{f} \cdot \tau(a) - \lambda \tilde{f} - \tilde{f}(\tau(a))e^* \\ &= \sigma(a) \cdot \tilde{f} - \tilde{f} \cdot \tau(a) \\ &= \tilde{D}(a,\lambda), \end{split}$$

for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$.

Corollary 3.3. Let σ be a bounded homomorphisms on Banach algebra \mathcal{A} and \mathcal{A}^{\sharp} be $\tilde{\sigma}$ -ideally amenable. Then \mathcal{A} is σ - ideally amenable.

Proof. If I be a closed two-sided ideal of \mathcal{A} and $d: \mathcal{A} \longrightarrow I^*$ be a σ -derivation, then I is a closed two-sided ideal of \mathcal{A}^{\sharp} and we can extend d to $\tilde{d}: \mathcal{A}^{\sharp} \longrightarrow I^*$ by $\tilde{d}(a, \lambda) = d(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Moreover, I is \mathcal{A}^* -bimodule actions defined as follow

$$f \cdot (a, \lambda) = f \cdot a + \lambda f \qquad (a, \lambda) \cdot f = acdotf + \lambda f$$

for all $a \in \mathcal{A}, \lambda \in \mathbb{C}$ and $f \in \mathcal{A}^*$. Clearly, \tilde{d} is $\hat{\sigma}$ -derivation. Thus, there exists $g \in I^*$ such that $\tilde{d}(a, \lambda) = \operatorname{ad}_g(a, \lambda)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. finally, we have that

$$d(a) = d(a, \lambda)$$

= $\hat{\sigma}(a, \lambda) \cdot f - f \cdot \hat{\sigma}(a, \lambda)$
= $\sigma(a) \cdot f - f \cdot \sigma(a)$

for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Therefore, d is a σ -inner derivation and \mathcal{A} is σ -ideally amenable.

Definition 3.4. We say that the closed two-sided ideal I of Banach algebra \mathcal{A} has the (σ, τ) -trace extension property if for every $m \in I^*$ such that $\sigma(a) \cdot m = m \cdot \tau(a)$ for each $a \in \mathcal{A}$, can be extend to an element $f \in \mathcal{A}^*$ such that $\sigma(a) \cdot f = f \cdot \tau(a)$ for all $a \in \mathcal{A}$.

Proposition 3.5. Suppose that σ and τ are two bounded endomorphisms on Banach algebra \mathcal{A} and \mathcal{A} is (σ, τ) -ideally amenable. Moreover, suppose that the closed two-sided ideal I of \mathcal{A} has (σ, τ) -trace extension property. Then $\frac{\mathcal{A}}{I}$ is $(\tilde{\sigma}, \tilde{\tau})$ -ideally amenable.

Proof. Let $\frac{J}{I}$ be a closed two-sided ideal of $\frac{A}{I}$ and $d: \frac{A}{I} \longrightarrow (\frac{J}{I})^*$ be a $(\tilde{\sigma}, \tilde{\tau})$ -derivation. It is to see that J is a closed two-sided ideal of \mathcal{A} . Now, if $q: \mathcal{A} \longrightarrow \frac{A}{I}$ and $\pi: J \longrightarrow \frac{J}{I}$ are natural quotient maps and π^* is a first adjoint map of π , then it is clear that $\pi^* \circ d \circ q: \mathcal{A} \longrightarrow J^*$ is a (σ, τ) -derivation. Thus, since \mathcal{A} is (σ, τ) -ideally amenable, there exists an element $g \in J^*$ such that

$$(\pi^* \circ d \circ q)(a) = \operatorname{ad}_q^{(\sigma,\tau)}(a) = \sigma(a) \cdot g - g \cdot \tau(a)$$

for all $a \in \mathcal{A}$. We can restrict g to I and denote by m that $m \in I^*$. Thus, we have that

$$\begin{aligned} \langle \sigma(a) \cdot m - m \cdot \tau(a), i \rangle &= \langle g, i\sigma(a) - \tau(a)i \rangle \\ &= \langle \operatorname{ad}_g^{(\sigma,\tau)}(a), i \rangle \\ &= \langle (\pi^* \circ d \circ q)(a), i \rangle \\ &= \langle d(a+I), I \rangle \\ &= 0 \end{aligned}$$

for all $a \in \mathcal{A}$ and $i \in I$. But, by hypothesis I has (σ, τ) -trace extension property. Hence, there exists $f \in \mathcal{A}^*$ such that $\sigma(a) \cdot f = f \cdot \tau(a)$ for all $a \in \mathcal{A}$. Let $g' = f_{|_J} : J \longrightarrow \mathbb{C}$. Then $g - g' \in J^*$, $(g - g')_{|_I} = 0$ and $g - g' \in (\frac{J}{I})^*$. Therefore, we have that

$$\begin{aligned} \langle d(a+I), j+I \rangle &= \langle (\pi^* \circ d \circ q)(a), j \rangle \\ &= \langle \sigma(a) \cdot g - g \cdot \tau(a), j \rangle \\ &= \langle \sigma(a) \cdot (g - g') - (g - g') \cdot \tau(a), j \rangle \\ &= \langle \operatorname{ad}_{(g-g')}^{(\tilde{\sigma}, \tilde{\tau})}(a+I), j+I \rangle. \end{aligned}$$

for all $a \in \mathcal{A}$ and $j \in J$, as required.

Acknowledgment

The authors thank the Center of Excellence for Mathematics at the University of Kurdistan.

References

- E. Ghaderi, R. Nasr-Isfahani, and M. Nemati, Some notions of amenability for certain products of Banach algebras, Colloq. Math., 130(2) (2013), 147–158. DOI 10.4064/cm130-2-1.
- [2] B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc., 127 1972.
- [3] M. Momeni., T. Yazdanpanah, and M. R. Mardanbeigi, Sigma-ideal amenability of Banach algebras, J. Math. Computer Sci., 8 (2014), 319–325. DOI 10.22436/jmcs.08.03.14.
- [4] A. Bodaghi, M. Eshaghi Gordji, and A. R. Medghalchi, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal., 3(1) (2009), 131–142. DOI 10.15352/bjma/1240336430.
- [5] M. S. Moslehian, Approximate $(\sigma \tau)$ -contractibility, Nonlinear Funct. Anal. Appl., 11(5) (2006), 805–813.
- [6] M. Sal Moslehian, and A. Niazi Motlagh, Some notes on (σ, τ)-amenability of Banach algebras, Studia Univ. "Babes-Bolyai", Mathematica, 3 (2008), 57–68.

