Computational Methods for Differential Equations C
http://cmde.tabrizu.ac.ir

Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 nn

Short message service remotely mobile device control

Mustafa Gh. Saeed*

University Research Center, Computer Science Department,
Cihan University Sulaimaniya, Iraq.
E-mail: mustafa.saeed@sulicihan.edu.krd

Kamaran HamaAli. A. Faraj

University Research Center, Computer Science Department,
Cihan University Sulaimaniya and Lebanese French University, Iraq.
E-mail: Kamaran.Faraj@sulicihan.edu.krd

Amin S. Mohammed

Information Technology Dept,
Lebanese French University, Erbil, Iraq.
E-mail: kakshar@lfu.edu.krd

Azhee W. Muhamad

Computer Science Dept, Sulaimani University, Sulaimani, Iraq.
E-mail: azhee.muhamad@univsul.edu.iq

Chiai Al-Atroshi

Information Technology Dept, Lebanese French University, Erbil, Iraq.
E-mail: chiai@lfu.edu.krd

Sherko H. Abdulrahman

Computer Science Dept, Sulaimani University, Sulaimani, Iraq.
E-mail: sherko.abdulrahman@univsul.edu.iq

* Corresponding author.

545

546

Abstract Nowadays; the use of mobile technology becomes part of the daily activity in our life.
Its impossible the advantage of any mobile instruments without disadvantage. The
disadvantage of unprotected mobile is creating various problems. The most popular
problem is that on mobile. Once the mobile owner has stored any personal data into
own mobile phone device. It might be the personal data needed at a time such as
(Forgetting, lost) anywhere. Furthermore, this makes the phone owner worry about
all personal data and data face real danger from someone else because of stored
personal data. The mobile device might be forgotten at home, work or anywhere,
and the owner of the device unable to control the phone and very hard to reach
stored data such as (Photos, Videos, Document files, Contact numbers, etc.). Our
proposed application solves the subject matter that mentioned the remote control
of Mobile using short messaging service (SMS) instead of the use of the Internet
just in case the internet facility is not always available but the SMS availability of
SMS is higher than the internet facility to change some of the mobile features. The
suggested mobile application was modeling to designed and implemented to control
mobile through using SMS only. The application can change ringing mode or send
SMS containing mobile last location or also can search for a specific name in the
contact names and send it to another mobile by analysing the incoming messages
if the message contains specific message format (pin code, Action, reply). The
suggested application was build and tested in the android operating system and in
the real mobile device.

Keywords. Mobile device control; Short message service; Broadcast receiver; Android permissions.

2010 Mathematics Subject Classification. 65L05, 34K06, 34K28.

1. INTRODUCTION

Mobile computing has caught the research communities attention for more than
a decade, and has also via smart-phones and PDAs reached the commercial indus-
try and mainstream consumers, also the mobile computing improvement in hardware
such as (better processing power, larger wireless network bandwidth), enhances capa-
bilities of mobile devices [1]. There are similarities between Mobile applications and
other Software apps in several faces such as: Security: protection of different devices
(smart-phones, tablets, laptops, other portable devices), Performance: load up time
of applications in devices and in addition Storage limitation: the fixed size of memory
[2]. While, there are some differences: Interaction with other applications: the appli-
cations in mobile are multi sources, meaning the one mobile may have a large number
of apps and there is a possibility of interaction between them. Sensor handling: mod-
ern mobiles like (smart-phones) have an accelerometer which will be affected by the
movement of the device and a touch screen which does many jobs especially when it
includes a virtual keyboard, microphone, connect to the internet with GPS scope, and
back and front camera. The flexibility of the code for different O.S versions: unlike
other softwares mobile apps are code flexible, meaning it works on almost any mobile
device even if the operating system of those phones are different [2]. There are several
actors intervening along the value chain in mobile application industry and because
of arrival of software companies with new mobile phones and platforms such as the
iPhone and Android these actors has changed, Some actors lost control of the device,
others got new revenue streams and some became more seamlessly integrated into the
platforms [1]. Most people now use mobile and they exposed to various problems, the

(&)
EE

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 547

most serious one is related to the phone itself and the personal data inside it needed at
a time such as (Forgetting, losing). A phone might get lost and this makes the phone
and its data face real danger, or it might be forgotten at home, work or anywhere,
and the user will be unable to control the phone and reach its data such as (Photos,
Videos, Document files, Contact numbers, etc.). There are many ways that help in
this case but they are not %100 effective, one of the ways is using internet, well not
always a phone is connected to internet or maybe there is not an internet source at
all, and even if it was connected still there is not much to do with that phone. The
mobile phone is often available by Subscriber Identification Module Card (SIM Card)
as default. It can be used to solve these problems, in addition to that; it makes the
user unrestrained to a particular telecommunication company in any country. This
paper aims to introduce a new mobile application to dell with situations that user
may be facing:
(1) Forgot a phone at home and want to get a contact number to make an im-
portant call.
e Just send an SMS to your phone with a contact name and you will get
number back as an SMS.
(2) Change the sound profile of the phone from silent to normal mode so it can
be found easily.
e ust send an SMS to your phone with a contact name and you will get
number back as an SMS.
(3) Lost a phone want to know the location exactly.
e Get current location immediately through SMS message.

2. ANDROID APPLICATION COMPONENTS

Android is a software that was founded in Palo Alto of California in 2003, And it is a
Linux based operating system it is designed primarily for touch screens mobile devices
such as smart phones and tablet computers. In addition, it is one of the most widely
used mobile OS these days. In the last 15 years, the operating system has developed a
lot starting from black and white phones to recent smart phones or mini computers [5].
Android is an open source operating system for the smart phone [5, 13]. The hardware
that supports android software is based on ARM architecture platform [5], which is
a family of reduced instruction set computing (RISC) architectures for computer
processors [6]. However technologies and performance together plays important roles
in real life developments [14]. Application components are the essential building blocks
of an Android application. These components are loosely coupled by the application
manifest file AndroidManifest.xml that describes each component of the application
and how they interact. There are four main components in android [3, 11]:

(1) Activities: It is a platform that appears to the user, which it handles the user
interaction to the smart phone screen, and holds the Ul components.

(2) Services: They handle background processing associated with an application.

(3) Broadcast Receivers: They handle communication between Android OS and
applications.

(4) Content Providers: They handle data and database management issues.

(e
BE

BMSGH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

FIGURE 1. Adding Receiver element in Manifest [1].
<receiver android:name=".MyBroadcastReceiver"” android:exported="true">
<intent-filter=
<action android:name="android.intent.action.BOOT_COMPLETED" />
<action android:name="android.intent.action.INPUT_METHOD_CHANGED" /=
</intent-filter>
</recelver>

FIGURE 2. Submit the Intent Filter [8].

IntentFilter filter = new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION);
filter.addAction(Intent.ACTION_AIRPLANE_MODE_CHANGED) ;

this.registerReceiver(br, filter);

2.1. Broadcast Receiver. This component is responsible for events that listen for
or respond to the events. Events are represented by intent class. These intents are
then routed to broadcast receiver. For example: SMS message is a broadcast receiver,
for sending the message there is one broadcast receiver and for receiving message there
is another broadcast receiver. A broadcast receiver is implemented as a subclass of
Broadcast-Receiver class and each message is broadcaster as an Intent object [3, 12].
This component is able to register receivers for any system-level or application-level
event. When that event happens, android system will tell the registered receivers
about the execution of events respectively. Broadcast Receivers simply answer to
broadcast messages from other applications or from the system itself. These mes-
sages are sometime called events or intents [3]. Android gives three ways for apps to
send broadcast: Ordered Broadcast Receiver It is a type of broadcast which is sent
in a synchronous way (i.e. one by one to each listener) [10]. Second type is Normal
Broadcast Receiver, which are entirely asynchronous. The send Broadcast (Intent)
method posts broadcasts to all receivers in an undefined order. This is more orga-
nized, but receivers cannot read outcome from other receivers, spread data received
from the broadcast, or terminate the broadcast [11].and finally Local Broadcast Re-
ceiver by use Local Broadcast Manager. Send Broadcast method sends broadcasts
to receivers that are in the same app as the sender. If no need to send broadcasts
over apps, using local broadcasts is the best way. The implementation is much more
systematic and no need to worry about any security problems related to other apps
being able to receive or send user broadcasts and no overhead of system-wide broad-
cast [11]. There are two ways to register broadcast receiver in mobile application
[10, 12, 13]: Manifest-declared (Statically) as shown in Figure 1 that receiver can be
registered through AndroidManifest.xml file. While the second way of register broad-
cast receiver is Context-registered (Dynamically) a receiver dynamically through the
Context.registerReceiver() method this way start with create an instance of Broad-
castReceiver instants and IntentFilter as shown in Figure 1. Then submit the receiver
by calling registerReceiver (BroadcastReceiver, IntentFilter) [11]. The main deference

(&)
EE

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 549

FIGURE 3. Sending-SMS-message Permission in the Manifest.

<manifest xmlns:android="http://schemas.android.com/apklres/android"
package="com.example.snazzyapp">

<uses-permission android:name="android.permission.SEND SMS"/>

<application ...> ... </application>
</manifest>

between register broadcast receiver using Manifest-declared and Context-registered is
in Manifest-declared the system package manager submits the receiver when the ap-
plication is installed. The receiver then becomes an individual entry point into the
application, which means that the system can start the app and deliver the broadcast
if the app is not currently running, while in Context-registered the system package
manager submits the receiver when the application in running mode only [8].

2.2. Android permissions. Android contains a permission system and predefined
permissions for certain tasks. Every application can request required permissions.
The cause of permission is to guard the privacy of an Android user. Android apps
must ask permission to approach sensitive user data (such as contacts and SMS), as
well as certain system features (such as camera and internet) [7, 13]. Depending on
the feature, the system might give the permission automatically or might induce the
user to accept the request. An application must announce the permissions it requires
by containing juses-permission; tags in the application manifest [7] as demonstrated
in Figure 3. For example, an app that needs to send SMS messages would have this
line in the manifest [7, 13]: There are two types of permissions (Normal, Dangerous):

(1) Normal permissions are those which are deemed harmless for the users privacy
or the operation of other applications (For example the permission to set the
time zone), Normal permissions are automatically granted to the application
[7, 8].

(2) Dangerous permissions affect the users private information, or could poten-
tially affect his data or the operation of other application (For example, the
ability to read the users contact data or SMS messages), only dangerous per-
missions ask user acceptance. The way Android pose the user to grant dan-
gerous permissions depends on the version of Android running on the user’s
device, and it must be granted by the user at runtime of the app [7, 8§].

3. FRAMEWORK DESIGN

The idea is to control a lost phone through another phone by SMS, so another
phone is needed to send the message through it. And it doesnt matter if the other
phones platform is Android or not because only a message is needed from it. The
application will be host on the user mobile (server side), it will read automatically all

(e
BE

350GH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

FIGURE 4. The requirements of propose application

u
G e Send SMS Receive SM$ Iv@ [>{change Ringer i

the incoming Message and analyzes it, after analyzing it will respond to the request
which was written in the Message, coming from client side, and performs some action
according to that request as explained in Figure 4 Use case diagram to demonstrated
the requirements of propose application.

Use Case Model

Client Side Server Side

3.1. The Messages Format. The message should be written in a special format so
the Application can recognize it and differentiates it from other messages. Message
format should include three parts:

(1) Pin code: For security purpose a pin code should be registered to the app
by user and this pin placed at the beginning of the message, so only the
authorized user can remote control this mobile.

(2) User Order: in this part of a message the user should determine which action
that the application perform and the action should be It must be predefined
in the application as shown in Table 1 message format parts.

(3) Reply: finally, this part is optional which is getting reply SMS from the phone.
Some actions the App will automatically answer the user without asking for
it, like if the pin code in the received message is right, but action part does
not match the operations specified in the App, then App should reply to the
sender that the message not accepted.

TABLE 1. Message format parts.

Pin Code User Request Reply

oAk Location

ok Ringer: Silent

ok Ringer: Silent, yes
otk Ringer: General

ok Ringer: General, yes
ook Ringer: Vibrate

ok Ringer: Vibrate, yes
ok Contact: name

2D

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 551

The application checks each and every Message that comes to the Mobile in sequence
steps:

(1) Step one it looks for the PIN code, if the message doesnt start with the PIN
it will ignore it, and if the Message was starting with the PIN then it will
accept it and starts checking the rest of the Message body.

(2) Step two it will check the body looking for similar Orders that it already has
inside the system, if it didnt recognize the order it will send an Alarm message
back to the sender to correct his order, and if it recognized the order it will
try to perform the requested Action.

(3) Finally, it checks the Reply part, if the user wanted it to reply it will send
him the result of the action which it done it, and if the user doesnt ask for
reply it will not reply. These steps are explained in Figure 5 by using activity
diagram.

3.2. General Structure of the propose Application. The propose Application
contains the following parts as demonstrated in Figure 6:

e MainActivity class and form: as form it is the first thing that appears to the
user, and as class it holds the permissions that appear to user to grant or not.

e Setting class and form: it is responsible of setting the PIN code and save it
inside Database.

e History class and form: it is responsible of storing Date and Time of receiving
SMS, Message Body and Phone Number of the Client User inside Database
each time he sends Message.

e Help class and form: it helps the user by explaining how to use the App.

e About class and form: it holds some information about the developer of the
App.

e readSMS class: it is a sub class of BroadcastReceiver class which is responsible
of receiving SMS messages even if the Application is turned off.

e getMyLocation class: it is a sub class of Location listener class that is respon-
sible of getting the location of the phone.

Database class: it is a sub class of SQLiteOpenHelper class (which is a class respon-
sible of creating database inside Android Studio). Inside this class, there are tables,
which saves data that have been send to it from other activities.

3.3. Permissions inside the propose application. The propose application uses
several features of Android and these features have permissions some of them need
to be granted by the user during runtime of the application because they are related
to the users personal information. These permissions identified inside application
manifest and inside the onCreate function of mainActivity class by the programmer
as showed in Table 2 and Figure 7. The permissions are for SMS, Accessing the
mobiles Location, changing Ringer mode, and Searching through the Contact list.

The propose application works basically with SMS messages so there should be a
request for receiving, reading and sending SMS message. The request will be declared
inside the manifest file as in Table 2 and because SMS is dangerous permission it
should be also written inside the onCreate function of mainActivity class as in Figure

(e
BE

352GH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

FIGURE 5. The requirements of propose application.

act process on message /

Activitylnitial .

W

(Receive SM3 j

Checdt FIM

[Wrong PIN]
[Comect Pin)

Activity Final

ong Adticn
Chedk Adtion bt]}I’{‘-S-Eﬂ:[.ﬂlan'n 5M51n>

sender

[True Action]
(Apply the Action)

Chedt Reply

[res]

(Send Reply to user

7 so in runtime of the application the user can grant permission to it , also, mobile
location a dangerous permission it should be asked the user to grant the permission.

3.4. High Level Design Of Propose Application. In order to explain high-level
design use sequence diagrams to demonstrate the server side on the message which
sent from the client side by show sequence of operation that should do in in propose
application, the main process are :getting Contact number , getting Location, and
change ringing mode of the mobile phone. There are some operations similarities
in application main process, for instance: Getting a Contact Phone number, start
with the user in client side only has to send a Message containing the format which

(&)
EE

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 553

FI1GURE 6. Class diagrams of the propose application.

class Class Model 7/

SGLiteGpenHetper |
DataBase
+ Column_1: String = “id” freadOnl
+ Column_2_Striing = "password” {readOnly}
—— f + DataBaseName Sking = "databaseName” freadOnly} |
E LocationListener + History Column 1. Sting = “id” freagoni
getMyLocation + Histoy_Column_2=_String = "datetime” {readOnl
+ History_Column_3: String = "phone” freadOnk
3 :"m"“:': ?“::';:‘ + History_Column_4:_String = “message" {readOnl
Wi doiie + HistoyTable: String = "history” freadOn
Srglude, doutle + TableName: Sting = “tabieName” freadOnl
+ geleh_inMCunlut} ' PING - Sting
* gethyLocstion)) . + DataBase(Context)
+ onLocationChanged(Location) : void + deletaData(String) : Intagar
+ onProviderDisabled{String) : void . Fon 0
+ onProviderEnabled{String) - void it afoy Dot [g
+_onStatusChanged(Sting, int, Bundle) : void C e Ontel) Cumor
) + getHistoryDatal) : Cursor
+ inseriData(String) : boolean ~dataBase
+ insenHistoryData(String, Sting. Sving) : boolean
+ onCreate(SQLiteDatabase) : void
+ onUpgrade(SQLiteDatabase. int, int) : void
+ updateData(Sting. String) : boclean
~dataBase
AppCompatactivity ||
BroadcastReceiver|| iy
readSi ~ dstaBase: DataBase
~ DelHistory: Butten
+ message: String ~ historyText: TexiView
+ phene: Sting ~ showHistory: Button
+ chedPIN . String + dateTime() : Sting
+ geibylocation) + deleteHistory() : void
+ onReceive(Contest, Intent) ; void + histany) : vaid
. # onCreate{Bundle) : void
~readsms \ + ing. String) : vaid
AppCompatActivity AppCompatActivity || AppCompatActivity |
Setting help_center About

+handles

imContact: ImageView
imHowTolkse: ImageView

buSave: Button

¥ onCreate(Bundle): void
buShow: Bution

contactSearchResult: Sting
contentResclver ContentResslver
detsBase: DstsBase
edPassword: EditTesxt

handles: Setting

imLocation: ImageView
imQuestionMark: ImageView
imRinger ImageView
imSMS: ImageView

T RN

+

images() : vaid
anCreate{Sundie} : void

At
readsms: readSMS = new showhlessage{Sting, String) : veid
savePassword: String =
onCreate(Bundle) : void
ringerModeNomal]) : void
ringerhodeSilent]) - void
ringerhodeVibrate) : void
saveData() : void
SearchByName{String) : void
showData() : void
showhessage{String, String) : veid
AppCompatActivily |

MainActivity

+

I

r ottt bW

+

checiPaimissi , String) * beslean
onCreate{Bundle) : vaid
enCreateCptionsMenu{Menu) : baslean
onOptionsitemSelected(Menultem) : boclean

[+ + =+

is specific for Contact Number which showed in Table 1, the System service of the
Server Phone receives the message by Broadcast Receiver which receives every SMS
message that comes from outside, and because application also has registered to
Broadcast Receiver to receives every incoming message even if the app was turned off.
The application starts analyzing the message through readSMS class which takes the
[c]v)
BEE

354AGH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

TABLE 2. Application Permissions.

Permission Name Permission Code

Receive SMS ”android.permission. RECEIVE_SMS”
Read SMS ”android.permission.READ_SMS”
Send SMS ”android.permission.SEND _SMS”
Read Contact ”android.permission. READ_CONTACTS”
Get Contacts ”android.permission. GET_ACCOUNTS”
Ringer mode ”android.permission. MODIFY_AUDIO_SETTINGS”
Access Location ”android.permission. ACCESS_FINE_LOCATION”

FIGURE 7. Dangerous permissions inside onCreate function

mnt permissions_All =1:
String[] Permissions= {Manifest permission.
Manifest permission 4CCESS COARSE LOCATION,

Manifest permission /) CONTACTS, Manifest permmssion INTERNET}
if (\checkPermissions(this, Permissions)){
ActivityCompat requestPermissions(this. Permissions. permissions All)}

READ &

M5, Manifest permission ACCESS FINE LOCATION,

Phone number of the sender and the message body, then gets the PIN code from the
Apps Database by getAllData() function and compares it with the messages PIN, if
the PIN was not included in the beginning of the messages body the app will ignore
the message and stop, and if the PIN was true it will check the rest of the body to
perform the requested Action, and if the App didnt recognize the Action it will send
an alarm message back to the sender to identify his action and it will stop, otherwise
it will go to Setting class and checks the contact list of the server Phone and looks
for the user which requested by the client user by SearchByName() function, then
readSMS class brings the result of the search and sends it back to the user and finish
the process then stops as explained in detail in Figure 8.

3.5. Low Level Design Algorithms Of Propose Application. In this section
contain the low-level design of propose application algorithms, which include four
algorithms: analysis income messages algorithm, Changing Ringer mode algorithm,
Getting Location algorithm, and Getting Contact algorithm

3.5.1. Analysis income messages algorithm. The SMS format is written in the client
side and it will be analyzed in server side as demonstrate in Figure 9: Client side:
The SMS format should be written in the following sequence:

(1) First the client user writes the PIN and coma symbol (****).

(2) Then he declares the action that he wants from server side.

(3) Finally if the action was needed to be told to give result back and client user
wanted to get the result he should put a coma symbol after the order then
write yes (,yes)..

(&)
EE

555

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565

FIGURE 8. Sequence diagram for getting contact number by SMS.

sd sequence n__.m.uqu_._..\

;

User (client side)
|
I

SMS{™*** contact:contact name.reply) sms
L

Android system Braodcast receiver
service

Self controller
[server side)

readShS Database

(e
BE

Setting

I
[

(R —

P sms recieved()

send alarm SMS to user if action is wrong()

—

I

I

I

! I

—————® send brosdesst to regsitered App{) 1
| I

| I

I

I

sms has been ﬂmuu?ﬁ..“..__:
>

l}:m_ﬁn the r___mﬂmni.u_

Compare PIN(Message, Database)

send contact to the user(Name, Phone Number)

L U

U

check the PIN(****)

Stop if wrong PIN “

chedk Adtion |
PINis me
|
Stop If wiong Action

)
Action{contact)

=

getAllData() :Cursor

SearchByName{contactName)

get the BaﬁnnZur..m. Phone Number)

Stop

36GH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

FIGURE 9. Algorithm of SMS format.

act 5M 5 format algorithm /

does the action user want reply

need 8 rEle

Action

send message

finish

Server side:The mobiles System service receives income message and the propose
application analysis the income message. First of all, checks the PIN code with the
registered PIN inside the Applications database, if the PIN was wrong it will ignore,
while if it was correct then it will analyze the action, if it didnt recognize the action
it will send an alarm message back to the client user to identify his action, and if it
recognized the action then it will answer to that action and check the message for
reply, if the user wanted reply it will send him a message containing the result of the
action, and if the user doesnt want reply it will stop as showed in Figure 4.

3.5.2. Changing Ringer Mode Algorithm. In order to change the ringer mode the
following steps will happen in both client and server side:
Client side:

(1) Write PIN code and coma symbol.

(2) For ringer mode order user should write ringer:.

(3) There are three modes for ringer (General, Vibrate and Silent) so user should
declare which mode he wants, he should write the mode (vibrate or silent or
general).

(4) Ringer mode is one of those types of orders that do not reply the result
automatically, so if the user wanted to see the result of the action he should
write coma and yes.

Server Side:

(1) The application checks for the PIN code.

(2) In case the PIN was correct it will check the action.

(3) For action ringer it will check the type of the requested ringer as explained in
detail in Figure 10.

(4) Performs the requested action.

(5) Check for reply.

3.5.3. Getting Location algorithm. To get the location the following steps are happen
in both client and server:
Client side:

(&)
EE

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565

FIGURE 10. Algorithm of Ringer mode in server side.

act ringer :ITIDdE/
m&tsﬂ

receive M5)

FPIM ched:

[comect PIN]

Checdt Acticn
[wrong PIM]

['.'.':r-:-ng acticn]
(Al:'.tmn F-'.lnger

Chedk Ringer type

Finish
[general vibrate silent]
(Perﬁ:m'rt Al:'.tinrr)
Reply Checdk l
Reply result
E)E

ot
ot
3

353GH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

(1) Write PIN code and coma symbol.

(2) For location order user should write location

(3) For location order user doesnt have to write yes at the end of the message,
the system will reply automatically. Server side.

Server side

(1) The application checks for the PIN code..

(2) In case the PIN was correct it will check the action.

(3) For action location it will go to getMyLocation class to get the location as
shown in Figure 11.

(4) Bring the location (longitude and latitude).

(5) Send the location back to user by SMS.

3.5.4. Getting Contact Algorithm. In order to get a Contact number the following
steps happen in both client and server side as shown in Figure 12: Client side:

(1) Write PIN code and coma symbol.

(2) For contact order user should write contact:contactName.

(3) In contact order, if the user doesnt have to write yes at the end of the message,
the system will reply automatically. Server side.

Server side:

(1) The application checks for the PIN code.

(2) In case the PIN was correct it will check the action.

(3) For action contact it will go to setting class to get the requested contact as
shown in Figure 12.

(4) Bring the contact (Name and Phone Number).

(5) Send the contact back to user.

4. IMPLEMENTATION AND TESTING

The propose application has a GUI which contains a number of sections such as
(setting, history and help center) as shown in Figure 13, and each part is responsible
of a certain job. When user downloads the Application the system will ask him
to grant permission to the features (Read SMS, Access phone location and Access
Contact list) as shown in Figure 14, and then the user should set the PIN code in
settings so the Application can start working as shown in Figure 15. Now the user
can use the applications features to control the phone, he can change ringer mode as
shown in Figure 15, or he can ask for a certain contact number and get it as shown
in Figure 16. To help the user get more familiar with the features and how to
use the Application in a proper way there is Help section, which the features of the
application are explained with examples as shown in Figure 18. And also there is
History part which every accepted message by the system will be stored inside it with
the Phone number of the sender and the date and time of delivering that message, as
shown in Figure 19.

(&)
EE

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565

FIGURE 11. Algorithm of getting location in server side.

559

act location

Is-tart

receive SMS)

PIM chedk

[comect PIN]

Checdk Adtion
[wrong PIN]

[wrong acticn)
Gntmrt |IJI.'.‘-E‘|IIIJ

1||"||r Finish
Geﬂ'l.l'l],rlul:atiun)

W
G)
W

(E-E-I'll:[result to u5er:>

BOGH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

FIGURE 12. Algorithm of getting contact in server side.

act contact /

Iﬂtart

(receive SM5)

PIN chedk
[comect PIN]
Chedk Action
[wrong PIN]

-.'.'r:-n-g EIZIIEH'I

(ﬁ.ﬂtl on Conta -:'.t

Finish
settin

get Contact Name,
Phone Number

(:Eend result to UEE-F:)

2D

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 561

F1cURE 13. The propose Application user interface.

SelfController Settings

History

M‘Jb! l' Help Center

About

F1GURE 14. The propose application Runtime permissions.

B Allow SelfController Q@ Allow SelfController E Allow SelfController
to send and view SMS to access this device's = to access your
messages? location? contacts?

DENY ALLOW 20f3 DENY ALLOW 30 DENY ALLOW

362GH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

FIGURE 15. User sets PIN.

SelfController

1234

Save Show

FI1GURE 16. Change ringer mode from silent to vibrate.
Bie i somssaf aule Ot ruses

~

1117 ringer.vibrateyes o

<~ Dnow O 1111 ringervibrateyes
. Phones Ringer is Vibrate .
Btiow Phones Ringer is Vibrate .
Now
Before After

Client _—> Server

5. CONCLUSION

The experimental result showed that controlling a mobile phone by its user can be
done in an easy and safe way even if the mobile phone is far away from user and that
is by using SMS messaging, this prevents presence of stressed moments and unwanted
[c]v)

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 563

FIGURE 17. Get contact number.

1234,contact:Hunter
1234 ,contact:Hunter . =

Contact: Hunter Contact: Hunter
Phone Number: 0770 Phone Number: 0770 S
= T - =B
Contact: Hunter Zain Contact: Hunter Zain
Phone Number: 0781 588 Phone Number: 0781 &
= ==
y y

Client Server

FiGURE 18. Help section, changing ringer mode guide.

© .l 99xM9:39 © Ll 99% W 9:40

SelfController

How to Usce

Change Ringer:
**+ ringer:silentyes
**+* ringervibrate yes
#*&k ringer.general yes

07

situations to the user by making him more comfortable imagining his mobile in his
hands. This has done by answering to a basic and general problem that faces a user
with his daily routine which is losing the mobile. Losing mobile comes with many
problems which this research answered them like:

(e
BE

3AGH. SAEED, K. H. A. FARAJ, A. S. MOHAMMED, A. W. MUHAMAD, C. AL-ATROSHI, AND S. H. ABDULRAHMAN

Ficure 19. History section.

v) @ = .l 90% N 10:38

SelfController

Show History Delete History

Date and time:Thursday, May 24, 2018 -
09:59:14

Phone:+9647 70
Message:1234,contact:Hunter

e Not knowing the location of the mobile, this research solved this by getting
last known location of the mobile phone and sending it to the user.

e Calling the mobile but it is in silent mode, this research solved this by con-
trolling the ringer mode and changing it to Vibration or Normal (General)
mode.

e Needing a specific contact number, this research solved this by getting the
requested contact and sending it to the user.

6. SUGGESTIONS AND FUTURE WORKS

As a future work, the researcher has planned to add more actions to increase the
abilities of the application to help user taking control of more stuff of his phone such as
(control Camera, delete files, uninstall apps, change screen mode), and also to improve
the quality of the app and help the user not losing money because of the SMS message
cost, researcher suggests a backup way which is using other ways of messaging such
as (Email, Facebook Messenger, Viber or any other messaging application).

REFERENCES

[1] A. Holzer and J. Ondrus, Mobile application market: A developer’s perspective, Telematics and
informatics, 28(1) (2011), 22-31.

@&
(EE

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 545-565 565

2]

(3]
(4]
(5]
(6]
(7]
(8]
[431
(11]
(12]
(13]

(14]

A. 1. Wasserman and J. Ondrus, Software engineering issues for mobile application develop-
ment., In Proceedings of the FSE/SDP workshop on Future of software engineering research
ACM, (2010), 397-400.

Website article, Android Application components, https://www.tutorialspoint.com , 10 March
2018 07:00 PM.

Website article, Marziah K., What Is Google Android?, https://www.lifewire.com , 12 March
2018 08:15 PM.

Website article, Tarun A., What Everybody Ought to Know about Android: Introduction, Fea-
tures and Applications, https://www.elprocus.com , 15 March 2018 08:10 PM

Website article, Wikipedia, ARM architecture, https://en.wikipedia.org , 15 March 2018 08:30
PM

Website article, Permissions Overview, https://developer.android.com , 18 March 2018 07:10
PM

Website article, App Manifest Overview, https://developer.android.com , 19 March 2018 06:50
PM

Website article, Broadcast Receivers, http://archive.oreilly.com , 20 March 2018 07:45 PM
Website article, Broadcasts overview, https://developer.android.com , 20 March 2018 08:30 PM
Website article, Android - Broadcast Receivers, https://www.tutorialspoint.com,20 March 2018
09:10 PM

L. Robert and L. Nashelsky, Electronic devices and circuit theory, 8 the edition, Prentice Hall
(Pearson Education Inc.), 2002.

C. Onukwugha and P. Asagba, Remote control of home appliances using mobile phone: A
polymorphous based system, African Journal of Computing and ICT, 6(5) (2013), 81-90.

A. Faraj and M. Rebaz, Web Technologies Performance Analysis for Different Platforms and
Hardware Architectures., International Journal of Computer Networks and Wireless Communi-
cations (IJCNWC), 3(6) (2013), 449-455.

	1. Introduction
	2. Android Application Components
	2.1. Broadcast Receiver
	2.2. Android permissions

	3. Framework Design
	3.1. The Messageâ•Žs Format
	3.2. General Structure of the propose Application
	3.3. Permissions inside the propose application
	3.4. High Level Design Of Propose Application
	3.5. Low Level Design Algorithms Of Propose Application

	4. IMPLEMENTATION AND TESTING
	5. Conclusion
	6. Suggestions and Future Works
	References

