تعداد نشریات | 44 |
تعداد شمارهها | 1,302 |
تعداد مقالات | 15,921 |
تعداد مشاهده مقاله | 52,195,249 |
تعداد دریافت فایل اصل مقاله | 14,971,012 |
پیشبینی بیماری آلزایمر با استفاده از الگوریتمهای انتخاب ویژگی محاسبات نرم و بر پایه rs-fMRI و sMRI | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 8، دوره 49، شماره 2 - شماره پیاپی 88، مرداد 1398، صفحه 551-563 اصل مقاله (1.4 M) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
سید هانی حجتی1؛ عطاالله ابراهیم زاده1؛ علی خزائی* 2؛ عباس باباجانی فرمی3 | ||
1دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی نوشیروانی بابل | ||
2دانشکده مهندسی برق و کامپیوتر - دانشگاه بجنورد | ||
3دانشکده آناتومی و نوروبیولوژی- دانشگاه مرکز علوم بهداشت تنسی– ممفیس - آمریکا | ||
چکیده | ||
بیماری آلزایمر (AD)، یک بیماری پیشرفته و غیرقابلبرگشت است که اغلب در افراد مسن رخ میدهد و بهتدریج مناطق مغز را که مسئول حافظه، تفکر، یادگیری و رفتار هستند، از بین میبرد. در این مقاله پیشبینی AD بر اساس تصاویر rs-fMRI و sMRI بررسی میشود. در این مطالعه سه الگوریتم انتخاب ویژگی بر اساس روش محاسبات نرم ارائه شده، که طبقهبندی MCI-C از MCI-NC با آموزش و آزمایش الگوریتم SVM انجام میشود. این اولین مطالعهای است که از ادغام rs-fMRI و sMRI برای پیشبینی AD استفاده کرده است. نتایج حاصل از این مطالعه میتواند به مناطق شناخته شده مغز )عملکردی و ساختاری( که در بیماری آلزایمر دچار اختلال شدهاند، منجر شود. علاوه بر این، روش NBS بر روی تقسیمبندیهای عملکردی مغز، برای جداسازی MCI-C از MCI-NC و تشخیص زیر شبکههایی که دارای قابلیت تشخیصی برای پیشبینی AD هستند، به کار گرفته شده است. | ||
کلیدواژهها | ||
بیماری آلزایمر؛ پیشبینی؛ تئوری گراف؛ اطلاعات آماری مغز؛ تصویربرداری تشدید مغناطیسی؛ آنالیز مبتنی بر شبکه | ||
مراجع | ||
[1] A. M. Howseman, R. W. Bowtel, Functional magnetic resonance imaging: imaging techniques and contrast mechanisms, Philosophical Transactions of the Royal Society B, Biological Sciences, vol. 354, no. 1179-1194, 1999. [2] M. N. Moussa, P. J. Laurienti, S. Hayasaka, Consistency of network modules in resting-state FMRI connectome data, PloS one, no. 28-44, 2012. [3] V. J. R. Wolz , J. Koikkalainen , E. Niskanen , D. P. Zhang, D. Rueckert , H. Soininen , J. Lötjönen, Multi-Method Analysis of MRI Imagesin Early Diagnostics of Alzheimer's Disease, Plos one, 2016. [4] R Cuingneta, J. Tessieras, G. Auzias, S. Lehéricy, M. O. Habert, M. Chupin, H. Benalid, O. Colliot, Automatic classification of patients with Alzheimer's disease from structural MRI, A comparison of ten methods using the ADNI database, Neuroimage, vol. 56, no. 766-781, 2011. [5] C. Misra, Y. Fan, C. Davatzikos, Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD:results from ADNI, Neuroimage, vol.14, no. 22-44, 2009. [6] E. Moradi, Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects, Neuroimage,vol.104, no. 298-412, 2015. [7] K. Supekar, D. Rubin, M. Musen, M. D. Greicius, Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease, Computational Biology, 2008. [8] C. C. Armstrong, J. D. Feusner, J. T. McCracken, S. Chang, J. G. Levitt, J. C. Piacentini, J. O’Neill, Graph-theoretical analysis of resting-state fMRI in pediatric obsessive–compulsive disorder, journal of affective disorders, vol.84, no. 175-193, 2016. [9] طناز اکبرپور ، سبلان دانشور، « افزایش کیفیت ادغام تصاویر MRI و PET با استفاده از ترکیب موجک گابور و مدل شبکیه»، مجله مهندسی برق دانشگاه تبریز، جلد 54 ،شماره 5، 74-85،زمستان 94. [10] S. F. Eskildsena, P. Coupé, D. García-Lorenzo, V. Fonov, J. C. Pruessner, D. L. Collins, Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning, Neuroimage, vol. 65, no 511-521, 2013. [11] R. Wolz, J. Koikkalainen, E. Niskanen, D. P. Zhang, D. Rueckert, H. Soininen, J. Lötjönen. Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease, Plos one, vol. 10, 2013. [12] E. Moradi, A. C. Gaser, H. Huttunen, J. Tohka, Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects, Neuroimage, vol. 104, no. 398-412, 2015. [13] D. Zhang, D. Shen, Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers, Plos one, 2012. [14] C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, J. Q. Trojanowski, Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification, Neurobiological Aging, vol. 19, no. 27-32, 2010. [15] F. de Vos, T. M. Schouten, A. Hafkemeijer, E. G. Dopper, J. C. Van Swieten, M. de Rooij, et al. Combining multiple anatomical MRI measures improves Alzheimer's disease classification, Human Brain Mapping, vol. 37, no. 1920-1929, 2016. [16] B. Cheng , D. Zhang , D. Shen, Domain transfer learning for MCI conversion prediction, IEEE Transactions on Biomedical Engineering, vol. 62, no. 1805-1817, 2015. [17] P. Martijn v. d. Heuvel, Exploring the brain network: A review on resting-state fMRI functional connectivity, European neuropsychopharmacology, vol. 20, no. 519-534, 2010. [18] A. Khazaee, A. Ebrahimzadeh, A. Babajani-Feremi, Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease, Brain Imaging and Behavior, vol. 10, no. 799-817, 2015. [19] A. Khazaee, A. Ebrahimzadeh, A. Babajani-Feremi, Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory, Clinical Neurophysiology, vol. 126, no. 2126-2141, 2015. [20] Z. Liu, Y. Zhang, L. Bai, Yan, R. Dai, C. Zhong, et al, Investigation of the effective connectivity of resting state networks in Alzheimer's disease: a functional MRI study combining independent components analysis and multivariate Granger causality analysis, NMR in Biomedicine, vol. 25, no. 1311-1320, 2012. [21] M. D. G. Menon, K. Ben, L. R. Allan, Functional connectivity in the resting brain: A network analysis of the default mode hypothesis, vol. 100, no. 253-258, 2003. [22] C. R. L. Minati, Resting-state brain networks: literature review and clinical applicati, Neurology Sciences, vol. 32, 773-785, 2011. [23] C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson , G. Alexander G, D. Harvey, et al, The Alzheimer'sdisease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imagin, vol. 27, no. 685-691, 2008. [24] Y. Chao-Gan, Z. Yu-Feng, DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI, Frontntier System Neuroscience, vol. 13, 2010. [25] K. J. Friston, C. D. Frith, R. S. Frackowiak, R. Turner, Characterizing dynamic brain responses with fMRI: a multivariate approach, Neuroimage, vol. 2, no. 166-172, 1995. [26] H. Lu, Y. Zuo, H. Gu, J. A. Waltz, W. Zhan, C. A. Scholl, et al, Synchronized delta oscillations correlate with theresting-state functional MRI signal, Proceedings of the National Academy of Sciences, vol. 104, no. 18265-18269, 2007. [27] A. Kelly, L. Q. Uddin, B. B. Biswal BB, F. X. Castellanos, M. P. Milham, Competition between functional brain networks mediates behavioral variability, Neuroimage. vol. 527, no 37-39, 2008. [28] B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain, Neuron, vol. 341, no. 33-55, 2002. [29] B. Fischl, D. H. Salat, A. J. van der Kouw,N. Makris, F. Segonne, B. T. Quinn, et al, Sequence-independent segmentation of magnetic resonance images, Neuroimage, vol. 23, no. 69-84, 2004. [30] F. Segonne, A. M. Dale, E. Busa, M. Glessner, D. Salat, H. K. Hahn, et al, A hybrid approach to the skull stripping problem in MRI, Neuroimage, vol. 22, no. 1060-1075, 2004. [31] B. Fischl, A. Liu, A. M. Dale, Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transaction Medical Imaging, vol. 20, no. 70-80, 2001. [32] R. C. Craddock, R. Circle, G. A. James, P. E. Holtzheimer, et al, A whole brain fMRI atlas generated via spatially constrained spectral clustering, Human Brain Mapping, vol. 33, no. 1914-1928, 2016. [33] C. R. Minjie, P. Lopez-Garcia, S. C. Carter, J. H. Aizenstein, Optimum template selection for atlas-based segmentation, Neuroimage, vol. 34, no. 1612-1618, 2007. [34] N. T. Mazoyer, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, M. Joliot, Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, Neuroimage, vol. 15, no. 273-289, 2002. [35] N. U. Dosenbach, B. Nardos, A. L. Cohen, D. A. Fair, J. D. Power, J. A. Church, et al, Prediction of individual brain maturity using fMRI, Science. vol. 329, no. 1358-1361, 2010. [36] M. Rubinov, S. A. Knock, C. J. Stam, S. Micheloyannis, A. W. Harris, L. M. Williams, et al, Small‐world properties of nonlinear brain activity in schizophrenia, Human brain mapping. vol. 30, no. 403-416, 2009. [37] C. Destrieux, B. Fischl, A. Dale, E. Halgren, Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature, Neuroimage, vol. 53, no. 1-15, 2010. [38] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage, vol.52, no. 1059-1069, 2010. [39] S. Sivanandam, S. Deepa, Introduction to genetic algorithms, Springer Science & Business Media, 2007. [40] C. Yang, D. Simon, A new particle swarm optimization technique, Systems Engineering International Conference on IEEE, 2005. [41] Y. Fan, N. Batmanghelich, C. M. Clark, C. Davatzikos, Alzheimer's Disease Neuroimaging Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline, Neuroimage, vol. 39, no. 1731-1743, 2008. [42] C. Davatzikos, D. Shen, R. C. Gur, X. Wu, D. Liu, Y. Fan, et al, Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities, Archives of general psychiatry, vol. 62, no. 1218-1227, 2005. [43] علیرضا سردار، رمضان هاونگی، « بهبود عملکرد الگوریتم خوشهیابی خودکار تصاویر رنگی به کمک پیشپردازش با شبکه عصبی خودسامانده (SOM)»، مجله مهندسی برق دانشگاه تبریز، جلد 47 ،شماره 3 ،1073-1082، پاییز1396. [44] J. Krause, J. Cordeiro, R. S. Parpinelli, H. S. Lopes, A survey of swarm algorithms applied to discrete optimization problems, Swarm Intelligence and Bio-Inspired Computation, vol. 4, no. 169-191, 2013. [45] F. Bai F, W. Liao, D. R. Watson, Y. Shi, Y. Wang, C. Yue, et al, Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients, Behavioural brain research, vol. 216, no. 666-672, 2011. [46] Z. Wang, X. Jia, P. Liang, Z. Qi, Y. Yang, W. Zhou, et al, Changes in thalamus connectivity in mild cognitive impairment: Evidence from resting state fMRI, European journal of radiology, vol.81, no. 277-285, 2012. [47] C. Wee, P. Yap, K. Denny, J. N. Browndyke, G. G Potter, K. A. Welsh-Bohmer, et al, Resting-state multi-spectrum functional connectivity networks for identification of MCI patients, PloS one, 2012. [48] G. Chen, B. D. Ward, G. Chen, S. J. Li, Decreased effective connectivity from cortices to the right parahippocampal gyrus in Alzheimer's disease subjects, Brain Connect, vol.4, no 702-708, 2014. [49] C. Xie, F. Bai, H. Yu, Y. Shi, Y. Yuan, G. Chen, et al, Abnormal insula functional network is associated with episodicmemory decline in amnestic mild cognitive impairment, Neuroimage, vol. 63, no. 320-327, 2012. [50] A. Khazaee, A. Ebrahimzadeh, A. Babajani-Feremi, Alzheimer's Disease Neuroimaging Classification of patients with MCI and AD from healthy controls using directed graphmeasures of resting-state fMRI, Behavioural brain research, vol. 322, no. 339-350, 2017. [51] S. K. Madsen, A. J. Ho, X. Hua, P. S. Saharan, A. W. Toga, C. Jack, et al, 3D maps localize caudate nucleus atrophy in 400Alzheimer’s disease, mild cognitive impairment, and healthy elderly subjects, Neurobiology of aging, vol. 31, no. 1312- 1325, 2010. [52] J. Koivunen, N. Scheinin, J. Virta, S. Aalto, T. Vahlberg, K. Någren, et al, Amyloid PET imaging in patients with mild cognitive impairment A 2-year follow-up study, Neurology, vol. 76, no. 1085-1090, 2011. [53] M. D. Ikonomovic, W. E. Klunk, E. E. Abrahamson, C. A. Mathis , J. C. Price, N. D. Tsopelas, et al, Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease, Brain, vol. 131, no. 1630-1645, 2008. [54] S. Bozeat, C. A. Gregory, M. Ralph, J. R. Hodges, Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease, Journal of Neurology, Neurosurgery & Psychiatry, vol. 69, no. 178-186, 2000. [55] S. E. Arnold, B. T. Hyman, J. Flory, A. R. Damasio, G. W. Van Hoesen, The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease, Cerebral Cortex, vol. 1, no. 103-116, 1991. [56] A. Abu-Akel, S. Shamay-Tsoory, Neuroanatomical and neurochemical bases oftheory of mind, Neuropsychologia, vol. 49, no. 2971-2984, 2011. [57] W. W. Seeley, Anterior insula degeneration in frontotemporal dementia, Brain Structure and Function, vol. 214, no. 465-475, 2010. [58] W. W. Seeley, D. A. Carlin, J. M. Allman, M. N. Macedo, Bush C, B. L. Miller, et al, Early frontotemporal dementia targets neurons unique to apes and humans, Annual Neurology, vol. 60, no 660-667, 2006. [59] E. Salmon, P. Ruby, D. Perani, E. Kalbe, S. Laureys, S. Adam, et al, Two aspects of impaired consciousness in Alzheimer's disease, Progress in brain research, vol. 150, no. 287-298, 2005. | ||
آمار تعداد مشاهده مقاله: 663 تعداد دریافت فایل اصل مقاله: 610 |