تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,538,546 |
تعداد دریافت فایل اصل مقاله | 15,242,269 |
تقویتکننده کم نویز فرا پهن باند GHz 1.6-3.10 با شبکه تطبیق ورودی جدید | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 5، دوره 49، شماره 2 - شماره پیاپی 88، مرداد 1398، صفحه 517-529 اصل مقاله (1.61 M) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
ابوالفضل بیجاری* ؛ مهدی شیخی | ||
گروه الکترونیک - دانشکده مهندسی برق و کامپیوتر - دانشگاه بیرجند | ||
چکیده | ||
در این مقاله، یک تقویتکننده کمنویز (LNA) دوطبقه سورسمشترک با شبکه تطبیق ورودی جدید برای کاربردهای فرا پهنباند (UWB) ارائه شده است. شبکه تطبیق پیشنهادشده با استفاده از فیدبک منفی فعال و یک شبکه سلفی، دستیابی همزمان به تطبیق امپدانس ورودی پهنباند، عدد نویز پایین و بهره یکنواخت بالا را فراهم کرده است. تقویتکننده کمنویز پیشنهادشده بر پایه فنّاوری µm 18/0 CMOS RF-TSMC طراحی و با استفاده از نرمافزار ADS شبیهسازی شده است. این تقویتکننده در پهنای باند GHz 3.10-1.6، دارای بهره توان مستقیم (S21) dB 1±15، عدد نویز (NF) کمتر از dB 3.5 و تلفات بازگشتی ورودی (S11) کمتر از dB 10- است. توان مصرفی آن نیز mW 10 از منبع تغذیه V 1 بوده و مساحت مصرفی تراشه در حدود mm2 0.85 است. | ||
کلیدواژهها | ||
تقویتکننده کمنویز؛ تطبیق ورودی؛ آرایش سورس مشترک؛ فیدبک فعال | ||
مراجع | ||
[1] Y. Lo and J. Kiang, "Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and common-source stages", IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 9, pp. 2285-2294, 2011. [2] Q. Wan and C. Wang, "Design of 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current reuse technique", AEU - International Journal of Electronics and Communications, vol. 65, no. 12, pp. 1006-1011, 2011. [3] الهام بهرامی، حسین شمسی، «تقویتکننده لگاریتمی کم مصرف و کمنویز برای کاربرد ضبط سیگنالهای زیست-پتانسیل»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 3، صفحه 73-81، 1395. [4] H. Nejati, T. Ragheb, A. Nieuwoudt and Y. Massoud, "Analytical modeling methodology for ultra wideband low noise amplifiers with generalized filter-based impedance matching", Analog Integrated Circuits and Signal Processing, vol. 51, no. 2, pp. 121-127, 2007. [5] C. T. Fu, C.N. Kuo and S. Taylor, "Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching", IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 795-806, 2010. [6] S. Asgaran, M. Deen and C. Chen, "Design of the input matching network of RF CMOS LNAs for low-power operation", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 3, pp. 544-554, 2007. [7] پرویز امیری، محمود صیفوری، بابک آفرین، آوا هدایتی پور، «طراحی پیش تقویتکننده RGC کمنویز مدار مجتمع CMOS با پهنای باند GHz 20 و بهره dBΩ 60 »، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 15-23، 1395. [8] M. Khurram and S. M. R. Hasan, "A 3–5 GHz current-reuse gm-boosted CG-LNA for ultra wideband in 130 nm CMOS", in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp. 400-409, 2012. [9] Y. S. Lin and et al., "Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network", in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 2, pp. 287-296, 2010. [10] F. Chen, W. Zhang, W. Rhee, J. Kim, D. Kim and Z. Wang, "A 3.8-mW 3.5–4-GHz regenerative FM-UWB receiver with enhanced linearity by utilizing a wideband LNA and dual bandpass filters", in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3350-3359, 2013. [11] M. Battista, J. Gaubert, M. Egels, S. Bourdel and H. Barthelemy, "6–10 GHz ultra-wideband CMOS LNA", Electronics Letters, vol. 44, no. 5, pp. 343-345, 2008. [12] D. Cassan and J. Long, "A 1-V transformer-feedback low-noise amplifier for 5 GHz wireless LNA in 0.18-μm CMOS", IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 427-435, 2003. [13] X. Guan, C. Huynh and C. Nguyen, "Design of a 0.18-μm CMOS resistive shunt feedback low-noise amplifier for 3.1–10.6-GHz UWB receivers", 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, Houston, USA, 2011, pp. 1-2. [14] J. Borremans, P. Wambacq, C. Soens, Y. Rolain and M. Kuijk, "Low-area active-feedback low-noise amplifier design in scaled digital CMOS", in IEEE Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2422-2433, 2008. [15] A. Bevilacqua and A. Niknejad, "An ultra-wideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers", IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, 2004. [16] H. K. Chen, Y. S. Lin and S. S. Lu, "Analysis and design of a 1.6–28-GHz compact wideband LNA in 90-nm CMOS using a P-match input network", in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 8, pp. 2092-2104, 2010. [17] P. Y. Chang, S. H. Su, S. S. H. Hsu, W. H. Cho and J. D. Jin, "An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS", in IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp. 197-199, 2012. [18] J.-Y. Lee, W.-J. Lin, M.-P. Houng and L.-S. Chen, "A compact wideband matching 0.18 m CMOS UWB low noise amplifier using active feed-back technique", Progress In Electromagnetics Research C, Vol. 16, pp. 161-169, 2010. [19] L. Ma, Z. Wang, J. Xu, and X. Chen, " A 45-GHz CMOS low-power LNA using active feedback", PIERS Proceedings, Prague, Czech Republic, 2015, pp. 6-9. [20] C. Feng, Z. Lu, W. Lim, W. Sui and X. Yu, "3–10 GHz self-biased resistive-feedback LNA with inductive source degeneration", Electronics Letters, vol. 49, no. 6, pp. 387-388, 2013. [21] H. Chen, D. Chang, Y. Juang and S. Lu, "A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques", IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, pp. 616-618, 2007. [22] J. Borremans, P. Wambacq and D. Linten, "An ESD-protected DC-to-6GHz 9.7 mW LNA in 90nm digital CMOS", 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, USA, 2007, pp. 422-424. [23] Y. Lu, K. Yeo, A. Cabuk, J. Ma, M. Do and Z. Lu, "A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 8, pp. 1683-1692, 2006. [24] S. Arshad, R. Ramzan, K. Muhammad and Q. Wahab, "A sub-10mW, noise cancelling, wideband LNA for UWB applications", AEU - International Journal of Electronics and Communications, vol. 69, no. 1, pp. 109-118, 2015. [25] A. Galal, R. Pokharel, H. Kanaya and K. Yoshida, "High linearity technique for ultra-wideband low noise amplifier in 0.18μm CMOS technology", AEU - International Journal of Electronics and Communications, vol. 66, no. 1, pp. 12-17, 2012. [26] Y. S. Lin, C. C. Wang, G. L. Lee and C. C. Chen, "High-performance wideband low-noise amplifier using enhanced P-match input network", in IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, 2014. [27] C. Wu, Y. Lin and C. Wang, "A 3.1-10.6-GHz current-reused CMOS ultra-wideband low-noise amplifier using self-forward body bias and forward combining techniques", Microwave and Optical Technology Letters, vol. 55, no. 10, pp. 2296-2302, 2013. [28] Z. Zhang, A. Dinh, L. Chen, and H. Wang, "Wide range linearity improvement technique for linear wideband LNA", IEICE Electronics Express, vol. 14, no. 4, pp. 1-10, 2017. [29] A. Sahafi, J. Sobhi, and Z. D. Koozehkanani, "Linearity improvement of gm-boosted common gate LNA: Analysis to design", Microelectronics Journal, vol. 56, pp. 156-162, 2016. [30] Y. Yu, K. Kang, Y. Fan, C. Zhao, H. Liu, Y. Wu, Y. Ban and W. Yin, "Analysis and design of inductorless wideband low-noise amplifier with noise cancellation technique", in IEEE Access, vol. 5, pp. 9389-9397, 2017. [31] N. Li, W. Feng and X. Li, "A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network", in IEEE Microwave and Wireless Components Letters, vol. 27, no. 4, pp. 383-385, 2017. | ||
آمار تعداد مشاهده مقاله: 610 تعداد دریافت فایل اصل مقاله: 664 |