تعداد نشریات | 44 |
تعداد شمارهها | 1,302 |
تعداد مقالات | 15,921 |
تعداد مشاهده مقاله | 52,195,220 |
تعداد دریافت فایل اصل مقاله | 14,970,976 |
ارائه یک مدل پارامتریک تطبیقی جهت کشف و ردهبندی وقایع صوتی در سیگنالهای محیطی | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 9، دوره 49، شماره 2 - شماره پیاپی 88، مرداد 1398، صفحه 565-576 اصل مقاله (848.19 K) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
مراد درخشان؛ حسین مروی* ؛ حمید حسن پور | ||
دانشکده مهندسی کامپیوتر و فناوری اطلاعات - دانشگاه صنعتی شاهرود | ||
چکیده | ||
کشف وقایع صوتی در محیط کار و زندگی یک نیاز مدرن جهت گردآوری اطلاعات است. تاکنون بیشتر تحقیقها بر واقعه صوتی خاص و یا تعداد محدودی از وقایع صوتی برجسته متمرکز بودهاست. در اینجا یک مدلسازی جدید جهت کشف تمام وقایع صوتی رخداده در رکورد و تعیین محدوده زمانی برای هر یک از آنها ارائه شدهاست. نوآوری شامل مدلسازی جدید همراه با پارامترهای تطبیقی در مدل است. پس از استخراج ویژگیها و تعیین مقادیر دو پارامتر آلفا و بتا از دو قطعهبندی مجزا و ترکیب خروجی آنها برای تعیین وقایع صوتی و محدوده زمانی آنها استفاده شدهاست. این وقایع جهت ردهبندی به الگوریتم KNN فرستاده میشوند. پارامترها امکان دقت بیشتر و یا میزان کشف حداکثری را ممکن میسازند. وقایع صوتی آزمایششده شامل 16 نوع صدای اتاق کار اداری هستند که برخی شبیه هم و بعضی نیز مشابه نویز محیط هستند. در سنجش عملکرد برحسب واقعه، میزان درستی کشف 70.1 درصد، فراخوانی 75.8 درصد و میزان F1، 72.8 درصد بودهاست. همچنین میزان F1 برحسب فریم 80.6 درصد حاصل شد. مقدار F1 برحسب واقعه، نسبت به قبل 10.8% بهبود داشتهاست که مویدکارآمدی مدل پیشنهادی است. | ||
کلیدواژهها | ||
کشف وقایع صوتی؛ صداهای محیطی؛ الگوریتمهای یادگیری بدون نظارت؛ سیستمهای پارامتریک تطبیقی؛ سیستمهای نظارت صوتی؛ سیستمهای کسب اطلاعات مبتنی بر صدا | ||
مراجع | ||
[1] F. Aurino, M. Folla, F. Gargiulo, V. Moscato, A. Picariello, and C. Sansone, “One-class SVM-based approach for detecting anomalous audio events,” International Conference on Intelligent Networking and Collaborative Systems, Salerno, Italy, pp. 145-151, 2014. [2] V. Carletti, P. Foggia, G. Percannella, A. Saggese, N. Strisciuglio, and M. Vento, “Audio surveillance using a bag of aural words classifier,” Advanced Video and Signal Based Surveillance, 10th IEEE International Conference on, Krakow, Poland, pp. 81-86, 2013. [3] R. Maher, “Acoustical modeling of gunshots including directional information and reflections,” in 131st Audio Engineering Society Convention, New York, NY, 2011. [4] R. Cai, L. Lu, and A. Hanjalic, “Co-clustering for Auditory Scene Categorization,” in IEEE Transactions on Multimedia, vol. 10, no. 4, pp. 170-177, 2008. [5] Y. Ohishi, D. Mochihashi, T. Matsui, M. Nakano, H. Kameoka, T. Izumitani, and K. Kashino, “Bayesian semi-supervised audio event transcription based on markov indian buffet process,” IEEE (ICASSP), Vancouver, Canada, pp. 3163–3167, 2013. [6] E. Benetos, G. Lafay, M. Lagrange, and M. Plumbley, “Detection of overlapping acoustic events using a temporally constrained probabilistic model,” IEEE (ICASSP), shanghai, china, pp. 6450–6454, 2016. [7] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley, “ Detection and classification of acoustic scenes and events ” IEEE Transactions on Multimedia vol. 17 no. 10 pp. 1733 – 1746, 2015. [8] R. Togneri and D. Pullella, “An overview of speaker identification: Accuracy and robustness issues,” IEEE Circuits and Systems Magazine, vol. 11, no. 2, pp. 23–61, 2011. [9] S. Pancoast and M. Akbacak, “Bag-of-audio-words approach for multimedia event classification,” in Interspeech, Portland, Oregon, USA, 2012. [10] A. Plinge, R. Grzeszick, and G. Fink, “A Bag-of-Features approach to acoustic event detection,” in IEEE (ICASSP),Florence, Italy, May 2014. [11] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound event detection in multisource environments using source separation,” in Proc. CHiME, Florence, Italy, pp. 36–40, 2011. [12] R. Hennequin, R. Badeau and B. David, "NMF with Time–Frequency Activations to Model Nonstationary Audio Events," IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 744-753, 2011. [13] T. Komatsu, Y. Senda, and R. Kondo, “Acoustic event detection based on non-negative matrix factorization with mixtures of local dictionaries and activation aggregation,” IEEE (ICASSP), shanghai, china, pp. 2259–2263, 2016. [14] X. Lu, Y. Tsao, S. Matsuda and C. Hori, “Sparse representation based on a bag of spectral exemplars for acoustic event detection,” IEEE (ICASSP), Florence, Italy, pp. 6255-6259, 2014. [15] IEEE DCASE 2016 Challenge, http://www.cs.tut.fi/sgn/arg/dcase2016/, 2016. [16] I. Choi, K. Kwon, S. Hyun Bae, and N. Soo Kim, “DNN-based sound event detection with exemplar-based approach for noise reduction,” in Proc. IEEE (DCASE), Budapest, Hungary, September 2016. [17] T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux, and K. Takeda, “Bidirectional LSTM-HMM hybrid system for polyphonic sound event detection,” in Proc. IEEE (DCASE), Budapest, Hungary, September 2016. [18] J. Kurby, R. Grzeszick, A. Plinge, and G A. Fink, “Bag-of-features acoustic event detection for sensor networks,” in Proc. IEEE (DCASE), Budapest, Hungary, September 2016. [19] M. Zohrer, and F. Pernkopf, “Gated recurrent networks applied to acoustic scene classification and acoustic event detection,” in Proc. IEEE (DCASE), Budapest, Hungary, September 2016. [20] X. Zhuang, X. Zhou, M. Hasegawa-Johnson, and T. S. Huang, “Real-world acoustic event detection,” Pattern recognition Letters, vol. 31, no. 12, pp. 1543–1551, 2010. [21] E. Miquel, F. Masakiyo, S. Daisuke, O. Nobutaka, and S. Shigeki, “A tandem connectionist model using combination of multi-scale spectro-temporal features for acoustic event detection”. in Proc. IEEE (ICASSP), Kyoto, Japan, pp. 4293–4296, 2012. [22] L. Vuegen, B. Van Den Broeck, P. Karsmakers, J. F. Gemmeke, B. Vanrumste, , and H. Van hamme, “An MFCC-GMM approach for event detection and classification,” IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz, NY, USA, Oct. 2013. [23] مجتبی حاجی آبادی، عباس ابراهیمی مقدم و حسین خوشبین، «حذف نویز مبتنی بر یک الگوریتم وفقی نوین،» مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، صفحات 147-139، 1395. [24] مسعود گراوانچیزاده و ساناز قائمی سردرودی، «بهبود کیفیت گفتار مبتنی بر بهینهسازی ازدحام ذرات با استفاده از ویژگیهای ماسکگذاری سیستم شنوائی انسان»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، صفحات 297-287، 1395. [25] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Researchers,” Pattern Recognition Letters, vol. 27, no. 8, pp. 882–891, 2004. [26] J. T. Geiger, B. Schuller, and G. Rigoll, "Recognizing acoustic scenes with large-scale audio feature extraction and SVM," TUM, technical report, 2013. [27] D. Li, J. Tam, and D. Toub, "Auditory scene classification using machine learning techniques," technical report, 2013. [28] X. Zhou, X. Zhuang, M. Liu, H. Tang, M. Hasegawa-Johnson, and T. Huang, “HMM-based acoustic event detection with AdaBoost feature selection,” in Multimodal Technologies for Perception of Humans, Springer-verlag Berlin, Heidelberg, pp. 345-353, 2008. [29] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event detection in real life recordings,” in Proceedings of the 18th European Signal Processing Conference, Eusipco 2010, Aalborg, Denmark, pp. 1267-1271, August 2010. [30] W. Nogueira, G. Roma, and P. Herrera, “Automatic event classification using front end single channel noise reduction, MFCC features and a support vector machine classifier,” IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz, NY, USA, Oct. 2013. [31] M. E. Niessen, T. L. M. V. Kasteren, and A. Merentitis, “Hierarchical modeling using automated sub-clustering for sound event recognition,” in Proc. IEEE Workshop Applicat. Signal Process. Audio Acoust. (WASPAA), New Paltz, NY, USA, Oct. 2013, pp. 1–4. [32] J. F. Gemmeke, L. Vuegen, P. Karsmakers, B. Vanrumste, and H. V. hamme, “An exemplar-based NMF approach to audio event detection,” IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz, NY, USA, Oct. 2013. [33] L. Vuegena, B. V. D. Broeck, P. Karsmakers, J. F. Gemmeke, B. Vanrumste, and H. V. hamme, “An MFCC-GMM approach for event detection and classification,” IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz, NY, USA, Oct. 2013. [34] J. Schröder, B. Cauchi, M. R. Schädler, N. Moritz, K. Adiloglu, J. Anemüller, S. Doclo, B. Kollmeier, and S. Goetze, “Acoustic event detection using signal enhancement and spectro-temporal feature extraction,” IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz, NY, USA, Oct. 2013. [35] A. Diment, T. Heittola, and T. Virtanen, “Sound event detection for office live and office synthetic AASP challenge,” IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz, NY, USA, Oct. 2013. [36] J. Schroder, S. Goetze, and J. Anemuller, “Spectro-Temporal Gabor Filterbank Features for Acoustic Event Detection,” in IEEE/ACM Transactions on Audio, and Language Processing, vol. 23, no. 12, pp. 2198-2208, 2015. | ||
آمار تعداد مشاهده مقاله: 455 تعداد دریافت فایل اصل مقاله: 340 |