تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,460 |
تعداد دریافت فایل اصل مقاله | 15,214,307 |
بررسی جریان و خواص ترموفیزیکی نانوسیال ها در نانوکانال با استفاده از شبیهسازی دینامیک مولکولی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 40، دوره 49، شماره 3، آبان 1398، صفحه 365-374 اصل مقاله (2.26 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
رضا هنرخواه* 1؛ یونس بخشان2؛ محمود رحمتی3؛ جمشید خورشیدی4 | ||
1دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه هرمزگان، بندرعباس، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه هرمزگان، بندرعباس، ایران | ||
3استادیار، دانشکده مهندسی شیمی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران | ||
4استادیار، گروه مهندسی مکانیک، دانشگاه هرمزگان، بندرعباس، ایران | ||
چکیده | ||
در مقاله حاضر، ابتدا ضریب رسانای گرمایی نانوسیال با چهار نوع ذره شامل مس، نقره، پلاتین و طلا با سیال پایه آب درون یک نانوکانال مسی با استفاده از روش دینامیک مولکولی غیرتعادلی با میدان نیرو Pcff محاسبه شده است. نتایج نشان میدهد که نانوسیال نقره بیشترین افزایش ضریب رسانای گرمایی را دارد. بررسی برهمکنش و تمایل بین آب و نانوذره با استفاده از آنالیز تابع توزیع شعاعی (RDF) و ضریب نفوذ نانوسیال درون نانوکانال انجام گردیده است. همچنین خواص ترموفیزیکی نانوسیالها شامل CP,CV به روش دینامیک مولکولی تعادلی مورد بررسی قرار گرفت، بررسیها نشان میدهد که با افزایش نانوذره به آب مقدار گرمایی ویژه در فشار و حجم ثابت کاهش مییابد. در بررسی نمودار توزیع چگالی اتمها، نتایج نشان داد که بیشترین شدت چگالی مربوط به نانوذره نقره و بیشترین ضخامت لایه آب تشکیلشده در کنار نانوذره طلا میباشد. لزجت نانوسیالها از دو روش دینامیک مولکولی تعادلی و غیرتعادلی نیز محاسبه و مشخص گردید با افزایش نانوذره در نانوسیال، لزجت آن افزایش مییابد. | ||
کلیدواژهها | ||
رسانای گرمایی؛ میدان نیرو pcff؛ تابع توزیع شعاعی؛ ضریب نفوذ؛ مقدار گرمایی ویژه؛ لزجت | ||
مراجع | ||
[1] Bushehri M., Mohebbi A. and Rafsanjani H., Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation. Journal of Engineering Thermophysics, vol. 25, pp. 389-400, 2016. [2] Navas J., Sánchez-Coronilla A., Martín E.I., Teruel M., Gallardo J.J., Aguilar T., Gomez-Villarejo R., Alcántara R., Fernández-Lorenzo C. and Piñero J.C., On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids. An experimental and molecular dynamics study, Nano Energy, vol. 27, pp. 213-22, 2016. [3] Lee S., Saidur R., Sabri M. and Min T., Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation, Numerical Heat Transfer, Part A: Applications, vol. 69, pp. 996-1013, 2016. [4] Frank M., Drikakis D. and Asproulis N., Thermal conductivity of nanofluid in nanochannels. Microfluidics and nanofluidics, vol. 19, pp. 1011-1017, 2015. [5] Pham A.T., Barisik M. and Kim B., Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces. International journal of precision engineering and manufacturing, vol. 15, pp. 323-329, 2014. [6] Hu C., Bai M., Lv J., Wang P., Zhang L. and Li X., Molecular dynamics simulation of nanofluid’s flow behaviors in the near-wall model and main flow model. Microfluidics and nanofluidics, vol. 17, pp. 581-589, 2014. [7] Zhang M., Lussetti E., de Souza L.E. and Müller-Plathe F., Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. The Journal of Physical Chemistry B, vol. 109, pp. 15060-15067, 2005. [8] Ramires M.L., de Castro C.A.N., Nagasaka Y., Nagashima A., Assael M.J. and Wakeham W.A., Standard reference data for the thermal conductivity of water. Journal of Physical and Chemical Reference Data, vol. 24, pp. 1377-1381, 1995. [9] Bresme F. and Romer F., Heat transport in liquid water at extreme pressures: A non equilibrium molecular dynamics study. Journal of Molecular Liquids, vol. 185, pp. 1-7, 2013. [10] Mao Y. and Zhang Y., Thermal conductivity, shear viscosity and specific heat of rigid water models. ChemicalPhysics Letters, vol. 542, pp. 37-41, 2012. [11] Hu C., Bai M., Lv J. and Li X., An investigation on the flow and heat transfer characteristics of nanofluids by nonequilibrium molecular dynamics simulations. Numerical Heat Transfer, Part B: Fundamentals, vol. pp. 1-12, 2016. [12] Leach A.R., Molecular modelling: principles and applications: Pearson education, 2001. [13] Pang J., Yang H., Ma J., and Cheng R., Solvation behaviors of N-isopropylacrylamide in water/methanol mixtures revealed by molecular dynamics simulations. The Journal of Physical Chemistry B, vol. 114, pp. 8652-8658, 2010. [14] Chen Z., Gu Q., Zou H., Zhao T., and Wang H., Molecular dynamics simulation of water diffusion inside an amorphous polyacrylate latex film. Journal of Polymer Science Part B: Polymer Physics, vol. 45, pp. 884-891, 2007. [15] Ennari J., Neelov I., and Sundholm F., Molecular dynamics simulation of the PEO sulfonic acid anion in water. Computational and Theoretical Polymer Science, vol. 10, pp. 403-410, 2000. [16] Chen Y.J., Xu G.Y., Yuan S.L., and Sun H.Y., Molecular dynamics simulations of AOT at isooctane/water interface, Colloids and Surfaces A. Physicochemical and Engineering Aspects, vol. 273, pp. 174-178, 2006. [17] Wu J.Y., Liu Q.L., Xiong Y., Zhu A.M., and Chen Y., Molecular simulation of water/alcohol mixtures, adsorption and diffusion in zeolite 4A membranes, The Journal of Physical Chemistry B, vol. 113, pp. 4267-4274, 2009. [18] Kucukpinar E. and Doruker P., Effect of absorbed water on oxygen transport in EVOH matrices. A molecular dynamics study, Polymer, vol. 45, pp. 3555-3564, 2004. [19] Rajabpour A., Akizi F.Y., Heyhat M.M., and Gordiz K., Molecular dynamics simulation of the specific heat capacity of water-Cu nanofluids. International Nano Letters, vol. 3, pp132. 1-6, 2013. [20] Kang H., Zhang Y., Yang M., and Li L., Nonequilibrium molecular dynamics simulation of coupling between nanoparticles and base-fluid in a nanofluid, Physics Letters A, vol. 376, pp. 521-524, 2012. [21] Sarkar S. and Selvam R.P., Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. Journal of applied physics, vol. 102, pp. 074302, 2007.
[22] Hyżorek K. and Tretiakov K.V., Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations. The Journal of chemical physics, 144: p. 194507, 2016. [23] Chopkar M., Sudarshan S., Das P., and Manna I., Effect of particle size on thermal conductivity of nanofluid. Metallurgical and Materials Transactions A, 39: p. 1535-1542, 2008. [24] Aberoumand S., Jafarimoghaddam A., Moravej M., Aberoumand H., and Javaherdeh K., Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids, Applied Thermal Engineering, 101: p. 362-372, 2016. [25] Colangelo G., Favale E., Miglietta P., Milanese M., and de Risi A., Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy, 95: p. 124-136, 2016. [26] Sankar N., Mathew N., and Sobhan C., Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. International Communications in Heat and Mass Transfer, vol. 35, pp. 867-872, 2008. [27] Philip J. and Shima P., Thermal properties of nanofluids. Advances in colloid and interface science, 183: p. 30-45, 2012. [28] Yu W., France D.M., Routbort J.L., and Choi S.U., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 2008. 29: p. 432-460. [29] Zhou S. and Ni R., Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters, 92: p. 093123, 2008. [30]J.P. Meyer, S.A. Adio, M. Sharifpur, and P.N. Nwosu, The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transfer Engineering, 37: p. 387-421, 2016. [31] Namburu P.K., Kulkarni D.P., Misra D., and Das D.K., Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science, 32: p. 397-402, 2007. [32] Esfe M.H., Afrand M., Gharehkhani S., Rostamian H., Toghraie D., and Dahari M., An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. International Communications in Heat and Mass Transfer, 76: p. 202-208, 2016. [33] Muller-Plathe F., Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids. Physical Review E, 59(5): pp. 4894, 1999. [34] Fu Q., Zhu J., Xue Y., and Cui Z., Size-and shape-dependent melting enthalpy and entropy of nanoparticles. Journal of Materials Science, 52: p. 1911-1918, 2017. [35] Azmi W., Sharma K., Mamat R., Najafi G., and Mohamad M., The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids–a review. Renewable and Sustainable Energy Reviews, 53: p. 1046-1058, 2016. | ||
آمار تعداد مشاهده مقاله: 416 تعداد دریافت فایل اصل مقاله: 492 |